# Научно-исследовательская работа

# Химия

# ХВОСТОХРАНИЛИЩА КАК ИСТОЧНИК ВТОРИЧНЫХ РЕСУРСОВ

## Выполнил:

Курбатов Тимофей Владимирович

учащийся 10 класса

МБОУ СОШ №15, Россия, г.Апатиты

Коркачева Дина Александровна

научный руководитель,

МБОУ СОШ №15, Россия, г.Апатиты

## **ВВЕДЕНИЕ**

Я живу в Апатитах, и мне не безразлична экологическая ситуация в моем любимом городе. В настоящее время в России «Хвосты» ОАО «Апатит» отнесены к пятому (самому низшему) классу, то есть, они практически не нарушают экосистему. Однако, каждый год с весны по середину лета, когда водоемы подсыхают, «хвосты» не дают дышать местным жителям, поскольку начинают пылить при появлении сильного северного или северо-западного ветра, который дует именно в сторону города Апатиты. В данной работе я предпринял попытку найти подходы к решению проблемы использования хвостов.

**Актуальность:** новое направление производства по переработке хвостового хозяйства АНОФ-2 ОАО «Апатит» не только расширяет направления переработки на обогатительной фабрике, но и имеет экологическое значение, частично решает задачу по ликвидации объемов хвостохранилища.

**Цель:** найти применения хвостов, и использовать их как источник вторичных ресурсов.

# Для достижения поставленной цели в работе были решены следующие задачи:

- 1. Найти способ добычи гидроксида алюминия из хвостов и попытаться самому обогатить хвостовую пыль.
- 2. Выявить кол-во алюминия гидроксид и процентное содержание его в отвальных хвостах.
- 3. Найти спрос на гидроксид алюминия.
- 4. Проанализировать полученные результаты и сделать выводы.

# ГЛАВА І. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Интенсивное развитие промышленности, увеличение населения в городах и промагломерациях, высокие темпы роста технологического прогресса — все это неизбежно приводит к образованию огромного количества отходов, значительная доля которых принадлежит горно-добывающей и горноперерабатывающей отраслям промышленности [1].

Особенно значительной трансформации В условиях высокой антропогенной нагрузки подвергаются ландшафты в северных широтах. ПОД действием техногенных Северные экосистемы источников легко разрушаются, так как имеют низкий потенциал самоочищения И самовосстановления [2].

пляжной  $AHO\Phi-2$ Отложения хвостов зоны хвостохранилища представлены полидисперсным полиминеральным материалом, фракционированным в процессе намыва, и подвергаются высыханию. В минералогическом отношении хвосты примерно на 90% представлены алюмосиликатными минералами, основу которых составляют нефелин (> 50%), эгирин и эгириновый авгит (~ 20%), полевые шпаты (до 10%). Принадлежащий к классу фосфатов апатит составляет в отложениях хвостов 3-10%. Содержание других материалов весьма незначительно и в сумме не превышает 10%.

Общая закономерность фракционирования песков на пляжной зоне характеризуется двумя основными тенденциями - уменьшение крупности отложений по мере удаления от оси пульпопровода и увеличение крупности с глубиной. В соответствии с изменением крупности меняется и количественное соотношение минералов складируемого материала: с глубиной уменьшается количество апатита с 6-8 (на глубине 5-7 м) до 2-4% (на глубине 9-12 м); содержание полевого шпата, который концентрируется в более мелких фракциях, увеличивается с ростом глубины с 9-7 до 12-13%; процентное содержание нефелина и эгирина меняется мало.

Известно, что одним из определяющих факторов воздействия на природную окружающую среду в процессе функционирования хвостохранилища является

загрязнение атмосферного воздуха тонкодисперсными взвесями в результате пылевой эрозии с поверхности хвостохранилища [3].

Изучив проблему пылевых хвостов, я понял, что в них содержится алюминий, а это значит, что хвосты являются потенциальным источником гидроксида алюминия. В процессе изучения я использовал полный анализ химического состава пыли хвостов АНОФ-2, который сделал горный институт Санкт-Петербурга.

| Влага 0,11 Потери при прокаливании 1,07 $SiO_2 	 42,14$ $TiO_2 	 3,84$ $Al_2O_3 	 36,32$ $Fe_2O_3 	 5,35$ $FeO 	 3,22$ $P_2O_5 	 1,45$ $CaO 	 5,58$ $SrO 	 0,22$ $MgO 	 1,43$ $MnO 	 0,22$ $Na_2O 	 10,39$ $K_2O 	 5,28$ $FeO 	 5,28$ | Химический состав       | Содержание, % |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                  | Влага                   | 0,11          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                  | Потери при прокаливании | 1,07          |
| $\begin{array}{ccccc} Al_2O_3 & 36,32 \\ Fe_2O_3 & 5,35 \\ FeO & 3,22 \\ P_2O_5 & 1,45 \\ CaO & 5,58 \\ SrO & 0,22 \\ MgO & 1,43 \\ MnO & 0,22 \\ Na_2O & 10,39 \\ K_2O & 5,28 \\ \end{array}$                                        | $SiO_2$                 | 42,14         |
| $\begin{array}{cccc} Fe_2O_3 & & 5,35 \\ FeO & & 3,22 \\ P_2O_5 & & 1,45 \\ CaO & & 5,58 \\ SrO & & 0,22 \\ MgO & & 1,43 \\ MnO & & 0,22 \\ Na_2O & & 10,39 \\ K_2O & & 5,28 \\ \end{array}$                                          | $\mathrm{TiO}_2$        | 3,84          |
| $\begin{array}{cccc} FeO & 3,22 \\ P_2O_5 & 1,45 \\ CaO & 5,58 \\ SrO & 0,22 \\ MgO & 1,43 \\ MnO & 0,22 \\ Na_2O & 10,39 \\ K_2O & 5,28 \\ \end{array}$                                                                              | $Al_2O_3$               | 36,32         |
| $\begin{array}{ccc} P_2O_5 & 1,45 \\ CaO & 5,58 \\ SrO & 0,22 \\ MgO & 1,43 \\ MnO & 0,22 \\ Na_2O & 10,39 \\ K_2O & 5,28 \\ \end{array}$                                                                                             | $\mathrm{Fe_2O_3}$      | 5,35          |
| $\begin{array}{ccc} CaO & 5,58 \\ SrO & 0,22 \\ MgO & 1,43 \\ MnO & 0,22 \\ Na_2O & 10,39 \\ K_2O & 5,28 \\ \end{array}$                                                                                                              | FeO                     | 3,22          |
| SrO       0,22         MgO       1,43         MnO       0,22         Na <sub>2</sub> O       10,39         K <sub>2</sub> O       5,28                                                                                                | $P_2O_5$                | 1,45          |
| $\begin{array}{ccc} MgO & 1,43 \\ MnO & 0,22 \\ Na_2O & 10,39 \\ K_2O & 5,28 \\ \end{array}$                                                                                                                                          | CaO                     | 5,58          |
| $\begin{array}{ccc} MnO & 0,22 \\ Na_2O & 10,39 \\ K_2O & 5,28 \end{array}$                                                                                                                                                           | SrO                     | 0,22          |
| Na <sub>2</sub> O 10,39<br>K <sub>2</sub> O 5,28                                                                                                                                                                                      | MgO                     | 1,43          |
| $K_2O$ 5,28                                                                                                                                                                                                                           | MnO                     | 0,22          |
| _                                                                                                                                                                                                                                     | Na <sub>2</sub> O       | 10,39         |
| F <sub>o</sub> 0.35                                                                                                                                                                                                                   | $K_2O$                  | 5,28          |
| 1.2                                                                                                                                                                                                                                   | $\mathbf{F_2}$          | 0,35          |

#### ГЛАВА II. ПРАКТИЧЕСКАЯ ЧАСТЬ

Проанализировав таблицу, я перешел к первой задаче: найти способ добычи гидроксида алюминия из хвостов и попытаться самому обогатить хвостовую пыль (гидроксид алюминия может иметь гелеобразную или мелкокристаллическую форму и представляет собой вещество белого цвета). Материал реагирует с кислотами, растворами щелочей, имеет плотность 3,97 г/см<sup>3</sup>, не проводит электричество, температура плавления составляет 300°C.

# 2.1. Спекание нефелиновой шихты

# Ход работы

Приготовили шихту (перетирание хвостов с добавлением  $Na_2CO_3$  и CaO) На 10 грамм хвостов взяли 1,03 гр. соды, и 12,093 гр. известняка





Произвели спекание при  $t = 1250-1300 \, \text{C}^0$ , 2 часа

Развели 1 н. NaOH (нормальный раствор NaOH это 40 гр. едкого натра растворенного в 1 литре воды)

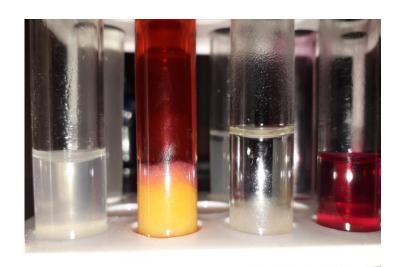


Щелочь подогрели до  $75C^0$ 



Спеки измельчили с добавлением 1-2 см<sup>3</sup> 1 н. раствора NaOH




Спек выщелачивали в течении 30 минут при температуре  $75C^0$ , периодически взбалтывая содержимое в стакане

Алюминатный раствор отделили от шлама через фильтр





Разлили в разные пробирки алюминатный раствор и подтвердили содержание алюминия в растворе, а следуя в хвостах



В пробирке с качественной реакцией

 $(NaAlO_2 + 2Ca(OH)_2 = Al(O)_3$ 

+ NaOH + 2CaO)

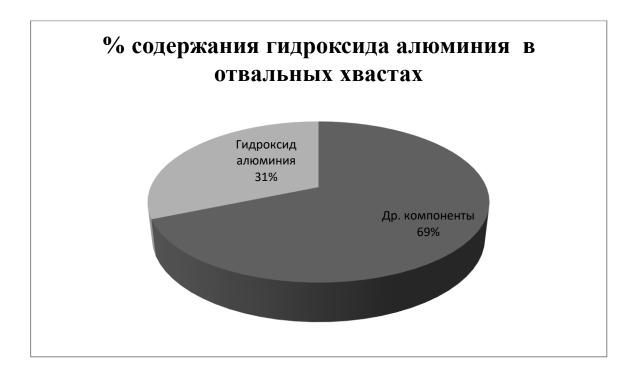
мы испарили жидкость и

получили гидроксида

алюминия



Пояснение: при переработке отвальных хвостов, помина гидроксида алюминия мы получаем  $Na_2CO_3$ ,  $K_2CO_3$  и цемент.


#### Плюсы

# проще и дешевле.

# Минусы

Хвосты уже являются отработанным К минусам я отнес только тот факт, продуктом, а это значит добывать что шихту нужно спекать в пределах гидроксид алюминия, будет намного  $t = 1250-1300 \, {\rm C}^0 \, 2$  часа, но в пределах большого производства я не думаю, что это будет дорого.

Выполнение 3 задачи: выявить количество алюминия и процентное содержание его в отвальных хвостов.



Выполнение 4 задачи: найти спрос на гидроксида алюминия

Сферы применения гидроксида алюминия

Гидроксид алюминия используется при производстве фтористого и сернистого алюминия, для получения минеральных удобрений, изготовления криолита, красок, наполнителей, бумаги, пластмасс, применяется в фармакологии, медицине и косметологии.

Возможность адсорбировать многие вещества открывает возможности по использованию гидроксида алюминия в процессах очистки различных сред, включая питьевую воду. При реакциях гидроксида с примесями образуется осадок, который легко отфильтровывается. В медицине материал применяется при изготовлении вакцин и лекарственных средств, нейтрализующих излишнюю соляную кислоту в желудке.

Способность гидроксида не растворяться под действием воды позволяет использовать его в текстильном производстве для изготовления водонепроницаемых, огнестойких тканей и в качестве протравы для связи

красителя с тканью. Также гидроксид алюминия используется в роли связующего при изготовлении бумаги высокого качества.

## Промышленное использование

В производственной сфере гидроксид алюминия применяется как подавитель горения при изготовлении пластиков, полиэтилена, каучука, силикона и других материалов. В качестве нетоксичной огнезащитной неорганической добавки с высокой дымоподавляющей способностью гидроксид алюминия эффективно заменяет неэкологичные антипирены.

Строительная отрасль и керамика также относятся к сферам, в которых широко используется гидроксид алюминия — производство бетона, промышленной, бытовой керамики, стекла во многих случаях связано с применением данного материала. В лабораторных исследованиях гидроксид алюминия используется в хроматографии при разделении веществ на отдельные компоненты.

#### **ЗАКЛЮЧЕНИЕ**

В ходе выполнения проекта мною были выполнены все поставленные задачи, я получил гидроксид алюминия и предлагаю его способ добычи, и нашел ему возможное применение. Я считаю, что избавится от хвостов на 100% мы не сможем, но можем снизить количество хвостов на хвостохранилищах и пыления и загрязнения окружающей среды.

# СПИСОК ИНФОРМАЦИОННЫХ РЕСУРСОВ

# Литература

- 1. Пашкевич М.А. Техногенные массивы и их воздействие на окружающую среду / СПГГИ. СПб, 2000. 230 с.
- 2. Пашкевич М.А. Экологический мониторинг: Учеб. пособие / СПГГИ. СПб, 2002. 90 с.

# Интернет-ресурсы

3. Discoverkola.com [Эл. ресурс]. Режим доступа URL: <a href="http://discoverkola.com">http://discoverkola.com</a>

*Приложение* Минеральный состав продуктов обогащения АНОФ-2 за 2018 год.

| Минералы                       | Янв   | Фев   | Map   | Апр   | Май   | Июн   | Июл   | Авг   | Сен   | Окт   | Ноя   | Дек   | 2018  |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| P <sub>2</sub> O <sub>5</sub>  | 1,59  | 1,30  | 1,80  | 1,66  | 1,47  | 1,64  | 2,19  | 1,85  | 1,90  | 2,52  | 2,26  | 1,47  | 1,84  |
| Al <sub>2</sub> O <sub>3</sub> | 20,66 | 20,13 | 20,05 | 20,86 | 20,53 | 18,66 | 19,92 | 20,25 | 20,20 | 19,43 | 20,06 | 21,01 | 20,55 |
| Апатит                         | 3,9   | 3,2   | 4,4   | 4,1   | 3,6   | 4,0   | 5,3   | 4,5   | 4,6   | 6,2   | 2,4   | 3,6   | 4,5   |
| Нефелин                        | 58,4  | 55,0  | 54,3  | 59,5  | 59,4  | 52,9  | 56,5  | 57,7  | 56,2  | 54,9  | 45,0  | 53,6  | 55,7  |
| Эгирин + эгирин-<br>диопсид    | 16,0  | 17,3  | 17,7  | 15,3  | 15,5  | 17,5  | 15,7  | 16,3  | 17,2  | 16,4  | 26,6  | 17,4  | 17,4  |
| Сфен                           | 2,6   | 3,4   | 2,7   | 2,2   | 2,6   | 2,5   | 3,2   | 3,3   | 2,3   | 3,8   | 5,6   | 3,4   | 3,2   |
| Лепидомелан                    | 0,1   | 0,1   | 0,0   | 0,0   | 0,1   | 0     | 0,1   | 0,1   | 0,1   | 0,0   | 0,1   | 0,1   | 0,0   |
| Титаномагнетит                 | 1,1   | 1,0   | 0,9   | 1,2   | 1,0   | 0,8   | 1,5   | 1,8   | 1,7   | 1,6   | 5,1   | 1,4   | 1,3   |
| Полевые шпаты                  | 10,4  | 10,7  | 12,4  | 10,2  | 9,1   | 13,4  | 11,1  | 10,0  | 11,7  | 8,3   | 9,1   | 13,0  | 11,1  |
| Гидрослюды+глины               | 1,6   | 2,1   | 1,1   | 0,6   | 1,2   | 0,8   | 0,7   | 1,6   | 1,1   | 0,9   | 0,8   | 1,2   | 0,8   |
| Ильменит                       | 0,2   | 0,2   | 0,4   | 0,2   | 0,3   | 0,5   | 0,3   | 0,3   | 0,4   | 0,4   | 1,6   | 0,7   | 0,4   |
| Эгирин + сфен                  | 0,1   | 0,1   | 0,0   | 0,2   | 0,2   | 0,1   | 0,0   | 0,1   | 0,0   | 0,1   | 0,0   | 0,1   | 0,1   |
| Эгирин + п. шпаты              | 0,3   | 0,6   | 0,0   | 0,5   | 0,5   | 0,3   | 0,4   | 0,7   | 0,1   | 0,1   | 0,1   | 0,1   | 0,2   |
| Шламы -10мкм                   | 5,3   | 6,3   | 6,1   | 6,0   | 6,5   | 7,2   | 5,2   | 3,6   | 4,6   | 7,3   | 3,6   | 5,4   | 5,3   |
|                                | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 |