Научно-исследовательская работа

Биология

«ИЗУЧЕНИЕ ВЛИЯНИЯ ФИТОНЦИДОВ КОМНАТНЫХ РАСТЕНИЙ НА МИКРОФЛОРУ ВОЗДУХА В УЧЕБНЫХ ПОМЕЩЕНИЯХ, ПУТЕМ ПОСЕВА МИКРООРГАНИЗМОВ»

Выполнила:

Бондарева Елизавета Сергеевна

учащаяся 10 класса МБОУ БГО СОШ № 3, Россия, г. Борисоглебск

Руководитель:

Воронова Ирина Геннадьевна

учитель биологии, МБОУ

БГО СОШ № 3, Россия, г. Борисоглебск

1. Введение

Воздух представляет собой среду, в которой микроорганизмы не способны размножаться. Это связано с отсутствием в воздухе питательных веществ, недостатком влаги и бактерицидным действием солнечных лучей. Микроорганизмы сохраняют свою жизнеспособность в воздухе в виде аэрозолей и лишь некоторые из них способны существовать в виде бактериальной пыли.

Но, вместе с тем, воздух является одним из основных резервуаров патогенных микроорганизмов. С помощью воздуха передается группа заболеваний, которые так и называются - инфекции дыхательных путей с воздушно-капельным и воздушно-пылевым механизмом передачи. Это наиболее распространенная группа инфекционных заболеваний человека, характеризующаяся исключительно легкостью передачи и широтой распространения.

Практическая значимость данного проекта заключается в том, что используемые методы по фитонцидной активности растений характеризуют Особенно воздушной микрофлоры. большое уровень количество накапливается в воздухе микроорганизмов закрытых помещений, длительное время находится значительное количество людей. В некоторых случаях, особенно при несоблюдении санитарно-гигиенического режима, воздух может представлять опасность для здоровья работающих в помещении. Поэтому необходимо следить за санитарным состоянием воздуха и изыскать средства и факторы, снижающие количество патогенных микроорганизмов в воздухе.

В связи с этим, исследования микрофлоры воздуха при влиянии на него комнатных растений помещении школы актуально и своевременно. Интерес представляет также поиск путей улучшения его санитарного состояния. Среди населяющих воздух микробов имеются сапрофиты, но встречаются патогенные микроорганизмы, вызывающие различные заболевания человека. Поэтому изучение микрофлоры воздуха и оценка бактериологической опасности воздуха

является актуальной задачей, а также данные исследования помогут приумножить знания фитонцидной активности различных комнатных растений, что имеет большое значение для санитарно -эпидемологической оценки помещения[7].

микрофлоры Качественный состав воздуха. Воздух является средой, содержащей значительное количество микроорганизмов. Для определения санитарно-показательных микроорганизмов используются седиментационный и аспирационный метод, посевы производят на элективные питательные среды [1].

Требования к санитарно - гигиеническому состоянию воздуха отражает таблица 1.

Таблица 1. Санитарно - гигиенические показатели воздуха закрытых помещений

Пробы воздуха	Сезон года	Общее	Число
		микробное	гемолитических
		число	стрептококков на
			1м воздуха
Атмосферный воздух	Средне - годовые	До 350	-
зелёной зоны			
Жилое помещение:			
а) чистый	Летом	До 1500	До 16
воздух			
б) загрязненный	Летом		Более 36
воздух		Более 2500	
в) чистый	Зимой		До 36
воздух		До 4500	
г) загрязненный	Зимой		Более 124
воздух		Более 7000	
Больничные палаты	Летом	До 3500	До 16

	Зимой	До 500	До 36

Качественный состав микрофлоры воздуха не стабилен и в значительной мере зависит от местных источников загрязнения. Обычно при анализах микрофлоры воздуха в большом количестве выделяются пигментные сапрофитные бактерии рода Micrococcus, споровые формы рода Bacillus [5].

Большое влияние на количество и качественные состав микроорганизмов в воздухе закрытых помещений оказывают растения, выделяющие фитонциды, губительно действующие на микробов. Фитонциды могут стимулировать рост и размножение тех или иных микроорганизмов, обладают бактерицидными и бактериостатическими свойствами.

Для оздоровления воздушной среды используют комнатные цветочные растения многие, из которых обладают высокой фитонцидной активностью. Это различные виды бегонии, гибискуса, алоэ, герани и т.д. Вот почему при подборе цветов для озеленения школьных помещений необходимо учитывать не только их декоративность, но и фитонцидные свойства [3].

Статистическая обработка результатов исследования.

Было выявлено около 7-и видов комнатных растений в школе, был проведён анализ разнообразия комнатных растений, используемых для озеленения. Как оказалось, чаще всего встречаются нефролепис высокий и хлорофитум пучковидный. (Приложение Таблица 2,3)

Для выявления влияния комнатных растений на общее микробное число воздуха были выбраны следующие кабинеты.

Кабинет вблизи лаборатории, где доминантными являлись алоэ в кабинете №209, герань в кабинете №210, нефролепис и "щучий хвост" в кабинете №208.

Изучение влияния фитонцидов комнатных растений на микрофлору воздуха путём посева микроорганизмов на мясо - пептонный агар, добавляя в чашку стерильно взятую часть растения. Учёт количества микроорганизмов в 1 м проводили в сравнении с контролем (посев без добавления контроля).

Цель: Оценить влияние фитонцидов комнатных растений на микрофлору воздуха в учебных помещениях МБОУ БГО СОШ №3.

Задачи:

- 1. Приготовить МПА для посева микроорганизмов
- 2. Произвести посев микроорганизмов в пробах
- 3. Определить общее микробное число воздуха
- 4. Изучить влияние комнатных растений на микрофлору воздуха
- 5. Сделать вывод и дать рекомендации.

2. Методика исследования

Объектом исследования являлась микрофлора воздуха помещений МБОУ БГО СОШ № 3, для выяснения влияния комнатных растений на микрофлору воздуха трёхкратный посев был проведен в кабинете № 208 (биология), № 209 (лаборатория), кабинете № 210 (химия).

При изучении микрофлоры закрытых помещений использовали некоторые общепринятые методы и методики.

1. Стерилизация оборудования.

Под стерилизацией (обеспложиванием) понимают полное уничтожение микроорганизмов и их спор в питательных средах, посуде, на инструментах и других предметах лабораторного оборудования. Для их стерильности наиболее часто пользуются воздействием высокой температуры.

Стерилизацию проводили в боксе для стерильных работ под воздействием ультрафиолетового излучения в течение 20 минут.

2. Приготовление питательной среды

В микробиологии питательные среды разделяют на:

- среды определенного и неопределенного состава;
- натуральные, полусинтетические и синтетические;
- основные, диагностические, элективные;
- плотные, полужидкие, жидкие, сухие, сыпучие [15].

Была выбрана натуральная питательная среда - МПА (Мясо - петонный агар). К 1 л МПБ добавляют 15— 20 г агара. Среду нагревают до растворения

агара (температура его плавления — 100 ° C, затвердевания — 40 °C), устанавливают слабощелочную реакцию среды 20%-ным раствором Na2CO3 и разливают в чашки Петри по 5 мл для получения скошенного агара — косяков. Чашки со средой стерилизуют в боксе для стерильных работ под воздействием ультрафиолетового излучения в течение 20 мин.

Определение общего микробного числа воздуха.

3. Посев микроорганизмов проводился седиментационным методом.

Седиментационный - наиболее старый метод, широко распространен благодаря простоте и доступности, однако является неточным, так как имеет ряд недостатков: на поверхность среды оседают только грубодисперсные фракции аэрозоля; нередко колонии образуются не из единичной клетки, а из скопления микробов; на применяемых питательных средах вырастает только часть воздушной микрофлоры. К тому же этот метод совершенно непригоден при исследовании бактериальной загрязненности атмосферного воздуха. Метод предложен Р. Кохом и заключается в способности микроорганизмов под действием силы тяжести и под влиянием движения воздуха (вместе с частицами пыли и капельками аэрозоля) оседать на поверхность питательной среды в открытые чашки Петри. Чашки устанавливаются в точках отбора на горизонтальной поверхности. При определении общей микробной обсемененности чашки с мясопептонным агаром оставляют открытыми на 5— 10 мин или дольше в зависимости от степени предполагаемого бактериального загрязнения.

По окончании экспозиции все чашки закрывают, помещают в термостат для культивирования в оптимальной для развития выделяемого микроорганизма среде, затем на 48 ч оставляют при комнатной температуре для образования пигмента пигментообразующими микроорганизмами.

4. Для пересчёта количество микробов на 1 м³ воздуха использовали формулу В. Л. Омелянского [2].

$$x = \frac{a * 100 * 1000 * 5}{b * 10 * t}$$

X- количество микробов в 1 м 3 воздуха; а- количество колоний в чашке;

b- площадь чашки; t- время, в течение которого чашка была открыта;

5- время по расчёту В. Л. Омелянского;10 - объём воздуха (в литрах) из которого происходит оседание микробов за 5 минут;100 - площадь (в см²) на которую происходит оседание; 1000 - искомый объём воздуха (в литрах)

Далее производим расчёт площади сегментов растений в чашках Петри

$$S_{\text{cerm.}} = S_{\text{cekt.}} - S_{\text{треуг.}} = \frac{\pi r^2}{360^{\circ}} * \alpha - S_{\text{треуг.}} \qquad S_{\text{треуг.}} = \frac{1}{2} \alpha h$$

Затем производим расчёт площади ареала, освобожденной от $S_{\text{ареала}} = S_{\text{сегм.}}\text{- ареал}$

Расчёт площади уничтоженных фитонцидами растений в чашках Петри

Количество колоний - 100см²; х колоний - S ареала, освобожденная от бактериальной колонии

5. Изучение морфологии микроорганизмов.

Описание колоний микроорганизмов в чашках Петри проводили по плану: 1.Форма колонии (круглая, амебоидная и др.); 2.Размер (диаметр колонии); 3.Поверхность колонии (гладкая, шероховатая); 4.Край колонии (ровный, волнистый и т. д.); 5.Структура колонии (однородная, неоднородная и др.); 6. Цвет колонии; 7.Блеск и прозрачность.

6. Внесение фитонцидов растений в пробы.

Измельчая растительный материал на разделочной доске, готовим кашицу из растений, содержащих фитонциды. Кашицу помещаем на агар в чашки Петри. Одну чашку оставляем для контроля, т.е. производим посев, но не вносим фитонциды.

3. Результаты

- 1. Стерилизация проводилась согласно методике стерилизации оборудования. (Приложение Фото 1)
- 2. Согласно методике приготовления питательных сред была выбрана натуральная питательная среда МПА (Мясо пептонный агар). (Приложение Фото 2)
- 3. Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 1м3 воздуха. (Приложение Таблица 4)

Для этого:

- 1) определяется площадь питательной среды в чашке Петри по формуле πr2;
 - 2) вычисляют количество колоний на площади 1 дм²;
 - 3) пересчитывают количество бактерий на 1м³ воздуха.

Производим расчет:

6 колоний -63,6 см²

X колоний -100 см²

Х = 9 колонии

Вычисляем количество бактерий в 1м³, воздуха (1000 л):

9 - 10 л

X - 1000 л

X = 900 спор

Следовательно, в 1м^3 воздуха содержится 900 спор клеток микроорганизмов.

В ходе исследования для микробиологической оценки воздуха каждого помещения использовалось по 1 чашке Петри. На основании подсчёта колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов в 1 м³ воздуха помещения.

Производим расчёт площади сегмента зелёных растений, площади ареала, освобожденной от бактериальной колонии, площади уничтоженных

фитонцидами растений в чашках Петри, например кабинет № 208 (биология) хлорофитум (Приложение Таблица 5)

$$(\frac{3,14*4,5*4,5}{360^{\circ}}*90)$$
 - 4,5 = 11,39625

S ареала, освобожденная от бактериальной колонии = 11, 39625 - 0,4=10,9≈11

S уничтоженных фитонцидами растений в чашках Петри

9 колоний - 100 cm^2

х колоний - 11 см²

 $x=0,99\approx1 \text{ cm}^2$

Таблица №6 Описание колоний микроорганизмов в чашках Петри

No	№	Вид	Фор	Кол	Поверхн	Край	Струк	Цвет	Обнар
каб	ча	растени	ма	-во	ость	колони	тура	колони	ужени
ине	шк	Я	коло	кол	колонии	И		И	е в
та	И		ний	они					проба
				й					X
	1	Хлороф	Круг	7	Шерохо	Неровн	Неодн	Серо-	Bacilli
		итум	лая		ватая	ая	ородн	белый	us,
							ая		Micro
							Прозр		coccus
							ачная		
	2	Сансеви	Круг	7	Шерохо	Неровн	Неодн	Белый	Bacilli
208		ерия	лая		ватая	ая	ородн	c	us,
био							ая	желты	Micro
лог							Прозр	M	coccus
ия							ачная	оттенк	
								OM	
	3	Нефроле	Круг	7	Гладкая	Неровн	Неодн	Желты	Bacilli
		пис	лая			ая	ородн	й	us,

							ая		Micro
									coccus
209	4	Алоэ	Круг	2	Гладкая	Неровн	Неодн	Белый	Bacilli
лаб			лая			ая	ородн	c	us,
opa							ая	желты	Micro
тор								M	coccus
ия								оттенк	
								OM	
210	5	Герань	Круг	2	Шерохо	Неровн	Неодн	Белый	Bacilli
хи		душиста	лая		ватая	ая	ородн	c	us,
мия		Я					ая	желты	Micro
								M	coccus
								оттенк	
								OM	

4. Выводы

На основании проведённых исследований можно сделать следующие выводы:

В кабинете № 208 (биология) самая высокая загрязненность, т.к. в нем проходят не только уроки, но и осуществляется внеурочная деятельность, кабинет работает с 8.00 до 17.00 . При микроскопировании проб обнаружены организмы палочковидной и шаровидной форм. Bacillius, Micrococcus. Комнатные растения значительно и достоверно снижают количественное содержание микроорганизмов в воздухе. В большей степени снижают содержание микроорганизмов в воздухе закрытых помещений такие растения как Aloe arborencens Mill, Pelargonium, Chlorophytum, в наименьшей - Hibiscus, Sansevieria trifasciata, Nefrolepis exaltata Schott.Состояние воздушной среды МБОУ СОШ №3 соответствует санитарно - гигненическим показателям воздуха закрытых помещений.

5. Заключение

По результатам работы были сделаны определенные выводы, которые привели к созданию рекомендаций, позволяющих улучшить состояние воздуха в школьных помещениях.

Для снижения запыленности в помещениях школы проводить чаще влажную уборку, проветривать помещения, использовать рециркуляторы.

В школе проводить озеленение учебных помещений комнатными растениями, обладающими фитонцидными свойствами. По данным исследования лучше всего использовать следующие растения: алоэ, растения семейства гераниевые, различные виды папоротников. Поднять вопрос о смене обуви школьниками в учебных помещениях.

6. Список литературы

- 1. Ашмарин И.П. Воробьев А.А. «Статистические методы в микробиологических исследованиях»; «издательство медицинской литературы» 1962г.
- 2. Белохвостова С.Д. Янович Т.Д. «Фитонциды, их роль в биологии»; «наука» 1965г.
- 3. Блинкин С.А., Рудницкая Т.В. «Фитонциды вокруг нас»; Москва «Знание» 1981г.
- 4. Васильева З.В., Кириллова Г.А. «Лабораторные работы по микробиологии»; Москва «Просвещение» 1979г.
- 5. Германов Н.И. «Микробиология»; Москва «Просвещение» 1996г.
- 6. Гродзинский А.М. «Проблемы биосферы и фитонциды»; Киев 1975г.
- 7. Кличонская Н.И., Пасечник В.В. «Комнатные растения в школе»; Москва «Просвещение» 1986г.

Приложение

Таблица 2 Некоторые сведения о комнатных растениях, наиболее часто используемых для озеленения помещений МБОУ БГО СОШ №3

Вид	Семейство	Родина	Жизненная форма	Сведения об
				использовании
1	2	3	4	5
Алоэ древовидное (Aloe	Лилейные	Африка	Суккулент	Медицина
arborencens Mill)				
Пеларгония (Pelargonium)	Гераневые	Южная Африка	Ползучий кустарник	В ароматеропии
Нефролепис Высокий	Петрисовые	Средиземно	Травянистые	Декоративные
(Nefrolepis exaltata Schott)		морье		
Сансивиерия Трёхполосая	Лилейные	Тропическая	Травянистые	Декоративные
(Sansevieria trifasciata)		область Африки		
		и Азии		
Chlorophytum	Спаржевые	Африка и	Травянистые	Декоративные
		Южная её часть		

Таблица №3

Комнатные растения, используемые для озеленения школы

№	Вид растения	Частота
		встречаемости(%)
1	Nefrolepis exaltata Schott	21
2	Chlorophytum	9
3	Pelargonium	7
4	Sansevieria trifasciata	7
5	Begonia rex Putz	5
6	Aloe arborencens Mill	4
7	Ficus	3



Фото2.Микроорганизмы в чашках Петри в термостате. Колонии бактерий в кабинете . Автор: Бондарева Е., сентябрь 2022

Фото.3 Приготовление МПА(Мясо-пептонный агар) и разлив питательной среды в чашки Петри. Автор: Бондарева Е., сентябрь 2022.

Таблица 4 Количество колоний (в чашке Петри) и количество микроорганизмов, содержащиеся в 1 ${\rm m}^3$ воздуха школьных помещений.

Помещение	Количество		Количество	микроорганиов в 1 м ³	
	колоний		воздуха		
	кабинет контроль		кабинет	контроль	
Кабинет № 208 (биология)	9	9	900	900	
Кабинет № 209 (лаборатория)	3	3	300	300	
Кабинет № 210 (химия)	6	6	600	600	

Таблица 5

Влияния фитонцидов комнатных растений на колонии микроорганизмов

№	№	Растение	Количеств	S сегмента зелёных	S ареала	S
кабинет	про		o	растений в чашках	освобожденная от	уничтоженных

a	бы		колоний	Петри	бактериальной	фитонцидами
					колонии	растений
						микроорганизм
						ов в чашках
						Петри
208	1	Chlorophytum	9	11,39625	11	1
209	2	Aloe arborencens Mill	2	13,79625	13	1,35
210	3	Pelargonium	4	12,67125	12	1,26
208	4	Sansevieria trifasciata	9	13,89625	14	0,48
209	5	Nefrolepis exaltata Schott	9	14,89625	15	0,26

Фото 4. Приготовление кашицы из растений, помещение её на МПА в чашки Петри. Расчёт площади сегмента зелёных растений в чашках Петри. Автор: Бондарева Е., октябрь 2022

