Проектная работа

Физика

Индивидуальный проект на тему:

«Модель четырёхцилиндрового двигателя внутреннего сгорания»

Выполнила:

Симакова Дарья Павловна

учащаяся 11 «А» класса

МБОУ СОШ №46 г. Калуга

Руководитель:

Иванова Татьяна Анатольевна

Учитель физики

МБОУ СОШ №46 г. Калуга

1. Тема проекта	Модель четырёхцилиндрового двигателя внутренне
	сгорания
2. Исполнитель проекта	Симакова Дарья Павловна
3. Куратор проекта	Иванова Татьяна Анатольевна
4.Название	МБОУ СОШ №46
образовательного	
учреждения	
5. Год разработки	2022
Учебного проекта	
6. Актуальность	В процессе изучения школьного курса физики нереди
	оказываются нужны приборы, для точного понимания того из
	иного физического процесса, но в силу обстоятельств, эт
	приборы не всегда можно найти в школьном кабинете физик
	что влечет за собой спад интереса к этой науке.
7. Проблема	Отсутствие четырехцилиндрового двигателя в кабине
	физики
8. Продукт	Модель четырёхцилиндрового двигателя
9. Гипотеза	При наличии модели четырёхцилиндрового двигателя
	школьников появится интерес и мотивация к углубленном
	изучению курса физики
10. Цель	Создать рабочую модель четырехцилиндрового двигате:
	и повысить мотивацию учащихся к изучению двигателей
11. Задачи	1. Найти и изучить информацию на тему «Двигател
	внутреннего сгорания». (до 7.11.2021)
	2. Поиск материалов (до 22.11.2021)
	3. Изготовление деталей для проекта (до 15.01.2022)
	4. Изготовить модель четырёхцилиндрового двигател
	(до29.01.2021)
	5. Произвести предварительное испытание это
	двигателя. (до 10.02.2022)
	6. Проанализировать допущенные недочёты и ошибки
	устранить их. (до 26.03.2022)
	7. Подготовить модель четырёхцилиндровог
	двигателя для презентации. (до 1.04.2022)
12. Ведущая цель	Практико-ориентировочный
15. Оценка	

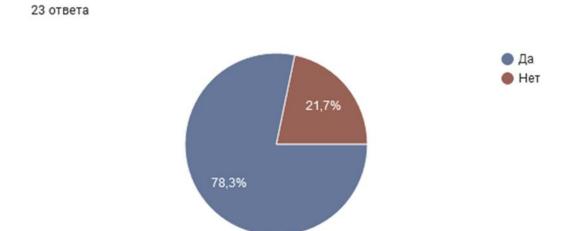
СОДЕРЖАНИЕ

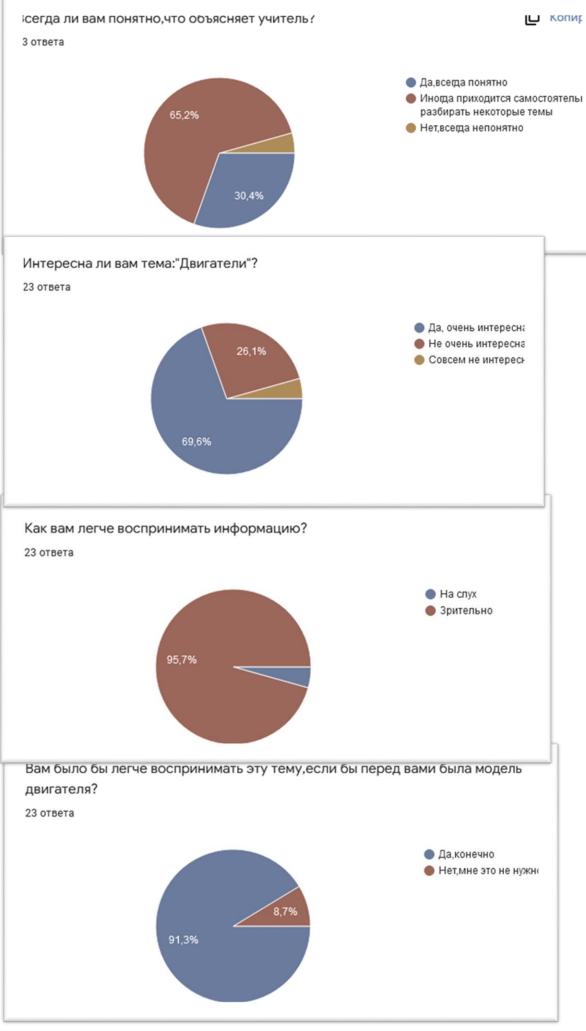
Введение	4
Глава І. ТЕОРИЯ	
1.1 Историческая справка	6
1.2 Понятие двигателя внутреннего сгорания	6
Глава II. СТРОЕНИЕ ЧЕТЫРЁХЦИЛИНДРОВОГО ДВИГАТЕЛЯ И	ПРИНЦИПЫ
РАБОТЫ	
2.1 Устройство двигателя внутреннего сгорания	7
2.2 Принцип работы четырёхтактного двигателя	8
2.3 Система зажигания	9
2.4 Впускная система	10
2.5 Система охлаждения	11
Глава III. ПРИМЕНЕНИЕ ЧЕТЫРЁХЦИЛИНДРОВОГО ДВИГАТЕЛЯ	
3.1 Применение ДВС	12
3.2 Воздействие двигателей на окружающую среду	13
3.3 Методы борьбы с вредными воздействиями тепловых двигателей на окр	ужающих13
Глава IV. ИЗГОТОВЛЕНИЕ ЧЕТЫРЁХЦИЛИНДРОВОГО ДВИГАТЕЛЯ	
4.1 Материалы для работы	14
4.2 Построение двигателя	14
ЗАКЛЮЧЕНИЕ	17
СПИСОК ИСТОЧНИКОВ И ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	18

ВВЕДЕНИЕ

Учащиеся 8-ых классов на уроках физики проходят тему «Двигатели внутреннего сгорания». Они изучают строение и принцип работы этих двигателей, но у некоторых возникают проблемы в понимании этой темы. Это происходит из-за того, что у них нет наглядного примера, чтобы изучить процесс работы и сам механизм двигателя внутреннего сгорания. Чтобы помочь разобраться ребятам в этой теме, я решила сделать модель четырёхцилиндрового двигателя. Эта модель поможет учащимся быстрее и эффективней освоить эту тему.

Для достижения моей цели я поставила перед собой задачи, которые помогут мне дойти до нее. Такие задачи включают в себя обзор литературы по существующим двигателям, отбор вариантов способных к реализации, составления плана по сборке модели, собственной оценке эффективности моей модели и представления его «целевой аудитории», которой будет являться школьники 8 классов, изучающие двигатели внутреннего сгорания.

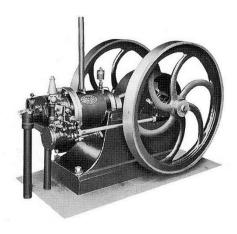

Надеюсь, что, создав подобную модель я помогу понять школьникам природу двигателей и подтолкну изучать данную тему с большим энтузиазмом.


Чтобы доказать актуальность своего проекта я создала опрос:

https://docs.google.com/forms/d/e/1FAIpQLSerXsI1XYrkJ4pyclNRoiO4W9zMaput_0iHh9R47 Wy89OP-Mg/viewform?usp=sf_link

Итог опроса:

Интересна ли вам физика?



Глава I. ТЕОРИЯ

1.1 Историческая справка

Идея создания ДВС впервые предложена X. Гюйгенсом в 1678; в качестве топлива должен был использоваться порох. Первый работоспособный газовый ДВС сконструирован Э. Ленуаром (1860). Бельгийский изобретатель А. Бо де Роша предложил (1862) четырёхтактный цикл работы ДВС: всасывание, сжатие, горение и расширение, выхлоп. Немецкие инженеры Э. Ланген и Н. А. Отто создали более эффективный газовый двигатель; Отто построил четырёхтактный двигатель (1876). (рис 1.1)

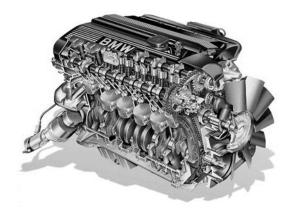
(рис 1.1) Первый четырёхтактный двигатель

В сравнении с паро-машинной установкой ДВС принципиально более прост, т.е. устранено одно звено энергетического преображенья - парокотельный агрегат. Это усовершенствование определило огромную компактность ДВС, наименьшую массу на единицу мощности, более высшую экономичность, но ему потребовалось горючее превосходнейшего свойства (газ, нефть). [1]

Вокруг вопроса о том, кому принадлежит ценность создания первого теплового мотора, длительно бурлили страстные споры. Эти споры длятся и на данный момент. Каждое изобретение имеет собственных создателей, но включает опыт нескольких предыдущих открытий и разработок. В данном деле были и основательные изобретения. Но, как не известно, кто вымыслил колесо, так и непонятно кто выдумал поршень.

1.2 Понятие двигателя внутреннего сгорания.

Область внедрения двигателей обширна. Большие объёмы применения приходятся на тракторостроение, раз в год возрастает применение двигателей в автомобилестроении. У нас в стране около 50% локомотивов ж. транспорта сочиняют тепловозы, т. локомотивы с двигателями, в США большинство

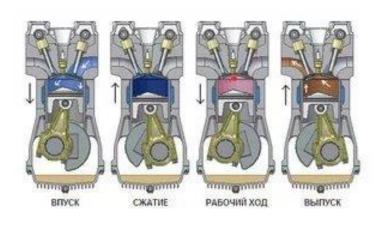

локомотивов - тепловозы. В речном флоте теплоходы с двигателями и дизельэлектроходы фактически вытеснили пароходы. Двигателя оборудуют самоходную военную технику (танки и ракетные установки). Обширно применяют двигателей в хорошем качестве передвижных и стационарных энергетических установок районах, удалённых от электропроводки.

Совершенствование двигателей исполняется маршрутом увеличения удельной мощности, частоты вращения, надёжности и долговечности, расширения ассортимента используемых топлив (многотопливные двигатели). [2]

Двигатель внутреннего сгорания (ДВС) есть термический двигатель, в каком хим. энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.

Глава II. СТРОЕНИЕ ЧЕТЫРЁХЦИЛИНДРОВОГО ДВИГАТЕЛЯ И ПРИНЦИПЫ РАБОТЫ

- 2.1 Устройство двигателя внутреннего сгоранияКорпус двигателя объединяет в единый организм (рис 2.1):
 - **блок цилиндров,** внутри камер сгорания которых воспламеняется топливновоздушная смесь, а газы от этого сгорания приводят в движение поршни;
 - кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
 - газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
 - система подачи («впрыска») и воспламенения («зажигания») топливновоздушной смеси;
 - система удаления продуктов горения (выхлопных газов). [3]

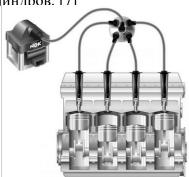

(рис 2.1) Четырёхтактный двигатель внутреннего сгорания в разрезе

2.2 Принцип работы четырёхтактного двигателя

При пуске двигателя в его цилиндры сквозь впускные клапаны впрыскивается воздушнотопливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, подавая механическую работу на вращение коленвала. Работа поршневого двигателя внутреннего сгорания исполняется циклически. Исходные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает постоянное поступательное вращение выходящего из двигателя коленчатого вала.

При этом двигатель проходит через следующие фазы работы (рис 2.2):

- Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура от 80 до 120 градусов Цельсия.
- **Такт второй, сжатие.** При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры до 300-400 градусов Цельсия.
- Такт третий, рабочий ход. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
- Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры 600-900 градусов по Цельсию. [4]

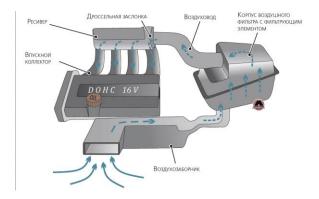

(рис 2.2) Принцип работы четырёхтактного двигателя

2.3. Система зажигания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра.

Составными частями системы зажигания являются (рис2.3):

- **Источник питания**. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы генератор.
- **Включатель, или замок зажигания.** Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
- **Накопитель энергии.** Катушка, или автотрансформатор узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
- Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилинлров. [7]


(Рис2.3) Система зажигания ДВС

2.4 Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё.

В состав впускной системы современных автомобилей, тракторов и прочей техники входят (рис2.4):

- **Воздухозаборник.** Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
- **Воздушный фильтр.** Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
- Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике при помощи электроники.
- **Впускной коллектор.** Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
- **Воздушный ресивер.** Представляет собой специальный сосуд, который работает под высоким давлением. Его основные задачи: Накопление сжатого воздуха
- **Воздуховод**. Пропускает воздух из воздушного фильтра в дроссельную заслонку. [3]

(рис 2.4) Впускная система

2.5 Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забора излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

Основные части системы охлаждения (рис 2.5):

- Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых алюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
- **Вентилятор** предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
- **Водяной насос** (помпа) «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
- **Термостат** специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор при прогретом двигателе. [3]

(рис 2.5) система охлаждения ДВС

Глава III. ПРИМЕНЕНИЕ ЧЕТЫРЁХЦИЛИНДРОВОГО ДВИГАТЕЛЯ

3.1 Применение ДВС

Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Тепловое расширение нашло свое применение в различных современных технологиях. В основном, можно сказать о применении теплового расширения газа в теплотехники. Так, например, это явление применяется в различных тепловых двигателях, т. е. в двигателях внутреннего и внешнего сгорания:

- Роторных двигателях;
- Реактивных двигателях;
- Турбореактивных двигателях;
- Газотурбинные установки;
- Двигателях Ванкеля;
- Двигателях Стирлинга;
- Ядерные силовые установки.

Тепловое расширение воды используется в паровых турбинах и т. д. Все это в свою очередь нашло широкое распространение в различных отраслях народного хозяйства.

Например, двигатели внутреннего сгорания наиболее широко используются:

- Транспортные установки;
- Сельскохозяйственные машины.

В стационарной энергетике двигатели внутреннего сгорания широко используются:

- На небольших электростанциях;
- Энергопоезда;
- Аварийные энергоустановки.

ДВС получили большое распространение также в качестве привода компрессоров и насосов для подачи газа, нефти, жидкого топлива и т. п. по трубопроводам, при производстве разведочных работ, для привода бурильных установок при бурении скважин на газовых и нефтяных промыслах.

Турбореактивные двигатели широко распространены в авиации. Паровые турбины – основной двигатель для привода электрогенераторов на ТЭС. Применяют паровые турбины также для привода центробежных воздуходувок, компрессоров и насосов.

Существуют даже паровые автомобили, но они не получили распространения из—за конструктивные сложности. Тепловое расширение применяется также в различных тепловых реле, принцип действия, которых основан на линейном расширении трубки и

стержня, изготовленных из материалов с различным температурным коэффициентом линейного расширения. [6]

3.2 Воздействие тепловых двигателей на окружающую среду.

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов.

- Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.
- Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа.
- В-третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу 2–3 тонны свинца.

Выбросы вредных веществ в атмосферу – не единственная сторона воздействия тепловых двигателей на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле. [6]

3.3 Методы борьбы с вредными воздействиями тепловых двигателей на окружающую среду.

Один из способов уменьшения путей загрязнения окружающей среды связан с использованием в автомобилях взамен карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца.

Другой способ состоит в увеличении КПД тепловых двигателей. В Институте нефтехимического синтеза им. А. В. Топчиева РАН разработаны передовые технологии метаморфозы углекислого газа в метанол (метиловый спирт) и диметиловый эфир, увеличивающие в 2–3 раза продуктивность аппаратов при значительном уменьшении электроэнергии. Здесь был создан реактор нового типа, в котором продуктивность увеличена в 2–3 раза.

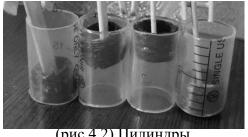
Пролог таких технологий уменьшит накопление углекислого газа в атмосфере и поможет не лишь создать альтернативное сырьё для синтеза множества органических соединений, базой для которых в настоящее время является нефть, но и решить упомянутые выше экологические проблемы. [7]

Глава IV. ИЗГОТОВЛЕНИЕ ЧЕТЫРЁХЦИЛИНДРОВОГО ДВИГАТЕЛЯ

4.1 Материалы для работы

Я решила сконструировать модель четырёхцилиндрового двигателя. Для работы я использовала различные материалы. Механизм в основном состоит из подручных средств, которые были у меня дома. Купила я лишь деревянные палочки для каркаса и шприцы для цилиндров, на это я потратила 250 рублей.

В работе я использовала такие материалы как:

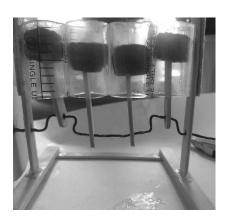

- Деревянные доски
- Деревянные палочки
- Проволока
- Пенопласт
- Пластиковые трубочки
- Бумажный картон
- Гофрированный картон
- Резинка
- Корпусы шприцов

4.2 Построение двигателя [5]

В первую очередь, чтобы собрать механизм я приготовила основание из дерева, на котором будет стоять модель (рис 4.1).

(рис 4.1)

Зачем я начала делать цилиндры, блок цилиндров сделала из корпусов шприцов, сами поршни сделаны из пенопласта и покрашены в черный цвет. В поршни я прикрепила шатун, которые сделала из деревянных палочек и все соединила (рис 4.2). Затем я соединила основание модели с цилиндрами, деревянными палочками.


(рис 4.2) Цилиндры

Затем я начала делать из гофрированного картона маховик, распредвал, коленчатый вал. Маховик я обклеила частью гофрированного картона и вставила в отверстия пластиковые трубочки. А распредвал и коленчатый вал я обклеила деревянными палочками (рис 4.3).

(рис 4.3) 1-Маховик, 2- Распредвал, 3-Коленчатый вал.

Следующее я начала делаю соединительную систему цилиндров из проволоки. И надела на неё шатуны (рис 4.4).

(рис 4.4) Соединительная система цилиндров.

Зачем я начала делать впускные и выпускные клапаны и их соединительную систему. Соединение я так же делала из проволоки, клапаны сделала из проволоки, а их основание из пенопласта и пластиковых трубочек. И все соединила (рис 4.5)

(рис 4.5) Соединительная система впускных и выпускных клапанов

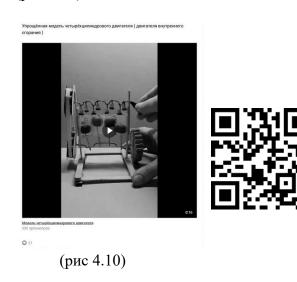
Я объединила соединительную систему клапанов с деревянными палочками, которые соединяют цилиндры и основание модели (рис 4.6).

(рис 4.6)

Затем я надела на соединительные проволоки маховик, распредвал и коленчатый вал. Сделала ручку и что бы соединительная резинка не спадала в дальнейшем, я сделала на распредвале и на коленчатом вале бортики. (рис 4.7)

(рис 4.7)

И соединила распредвал и коленчатый вал, резинкой (рис 4.8).



(рис 4.8)

(рис 4.9) Итог

Собрав, работающую модель я сняла видео и выложила его в социальную сеть Вконтакте (рис 4.10).

ЗАКЛЮЧЕНИЕ

Проанализировав литературу, результаты опроса и посмотрев на качественные и количественные индикаторы, я выяснила, что модель четырёхцилиндрового двигателя необходима для нашего кабинета физики. Она идеально подходит для демонстрации действия двигателя и вовлечения учеников в мир физики. Так же я выяснила, что способна на реализацию такого проекта. В ходе работы я приобрела новые навыки, которые пригодятся при моем дальнейшем обучении.

В итоге я получила двигатель внутреннего сгорания, который можно безопасно использовать на уроках физики. Учителя смогут наглядно показать принцип работы двигателя, а ученики легко поймут этот материал. Эта модель двигателя будет находиться в школьном экспериментариуме, в кабинете физики.

СПИСОК ИСТОЧНИКОВ И ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Физики: Биографический справочник/ под редакцией А. И. Ахиезера. 2-е изд., испр. и дополн. –М.: Наука, главная редакция физико-математической литературы, 1983. 401 с. Дата обращения: 5.11.2021г
- Физика. 10 класс: учебник для общеобразовательных учреждений: базовый и профильный уровни / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский; под ред. Н.А. Парфентьевой. – М.: Просвещение, 2020. Дата обращения: 5.11.2021г
- 3. Г. Я. Мякишев: Физика 11 класс / под редакцией Н.А. Парефентьевой. 23-е изд. М: Просвещение, 2014. 561 с. Дата обращения: 5.11.2021г
- Авто журнал [Электронный ресурс] // tractorreview.ru URL:
 https://tractorreview.ru/dvigateli/ustroystvo/dvigatel-vnutrennego-sgoraniya-ustroystvo-i-printsip-rabotyi.html#3 Дата обращения: 5.11.2021г
- 5. Большая Российская энциклопедия [Электронный ресурс] // bigenc.ru URL: https://bigenc.ru/technology and technique/text/4341616 Дата обращения: 6.11.2021г
- 6. Двигатель внутреннего сгорания [Электронный ресурс]// FindPatent.ru URL: https://findpatent.ru/patent/258/2581755.html Дата обращения: 6.11.2021г
- 7. Двигатель [Электронный pecypc]//zen.yandex.ru URL: https://zen.yandex.ru/media/the_auto/dvigatel-vnutrennego-sgoraniiadvs-princip-raboty-ustroistvo-i-istoriia-poiavleniia--602570195a38290c15f667c3 Дата обращения: 6.11.2021г
- 8. Открытый канал видеороликов [Электронный ресурс] // YouTube URL: https://youtu.be/CgKAGGwsVNE Дата обращения: 7.11.2021г
- 9. Принципы работы устройств [Электронный ресурс] // principraboty.ru URL: https://principraboty.ru/princip-raboty-chetyrehtaktnogo-dvigatelya/ Дата обращения: 7.11.2021г

в работе материалы и источники имеются ссылки.		
	«»	2022 г.
	/	/
	Подпись (ФИО)	

Индивидуальный проект выполнен обучающимся индивидуально. На все использованные