Муниципальное бюджетное общеобразовательное учреждение города Абакана «Средняя общеобразовательная школа №31»

Секция: Математика

Метод математической индукции

Марьина Е. С.

Ученицы 11 В класса МБОУ

«СОШ №31»

Учитель: Болсуновская О.В.

Абакан 2023

ОГЛАВЛЕНИЕ

Введение	2
Индукция и дедукция	4
Ложная индукция	4
Полная и неполная индукция	5
Математическая индукция	6
Теорема математической индукции	6
Примеры решения задач данным способом	8
Метод математической индукции в решении задач на делимость	8
Доказательство тождеств	8
Метод математической индукции в решении задач на геометрич	ескую
прогрессию	10
Задачи реальной действительности	11
Применение метода математической индукции к суммированию рядов	12
Математическая индукция с определенного числа	14
Математическая индукция в неравенствах	15
Заключение	17
Вывод	18
Библиографический список	19

ВВЕДЕНИЕ

Одной из отличительных черт математики является дедуктивное построение теории. Но дедукция не является единственным методом научного мышления. В экспериментальных науках велика роль индуктивных выводов. В математике индукция часто позволяет угадать формулировку теорем, а в ряде случаев и наметить пути доказательств. При выборе темы проекта я отталкивалась от того, что часто встречается в олимпиадных заданиях и поможет ученикам с их выполнением. В данной работе будет проведён разбор метода математической индукции и рассмотрены задачи, которые чаще всего встречаются в школьном курсе по математике, и их решения.

Актуальность: Наверняка мало кто знает об этом методе решения заданий, так как в школьных учебниках по математике эта тема почти не затрагивается, в интернете также непросто найти что-либо стоящее по этой теме. Узнав об этом методе можно расширить свои математические знания.

Проблема: Отсутствие знаний у большинства учеников старших классов о том, как решать задачи на доказательство истинности некоторого утверждения для всех натуральных чисел.

Гипотеза: Метод математической индукции является наиболее эффективным и верным способом решения задач на доказательство повышенной сложности.

Объект исследования: Метод математической индукции.

Предмет исследования: Задачи, в которых применяется данный метод.

Цель работы: Изучить метод математической индукции и выявить возможность решения некоторых задач, используя этот метод индукции.

Задачи: 1) Дать определение понятию «Математическая индукция» и изучить её принципы.

- 2) Выяснить, в каких заданиях применим данный метод.
- 3) Привести примеры решения задач рассматриваемым методом.
- 4) Выявить проблемы, возникающие при решении задач.

Что такое индукция?

Индукцией называется логический переход от какого-либо частного положения к общим утверждениям (Примером частного положения может послужить утверждение «98 делится нацело на 2». Примером общего - «Все числа, которые оканчиваются на ноль, либо на чётное число делятся нацело на 2».). Данное понятие широко распространено во многих науках: в логике, в экономике, в философии, в биологии, в химии, в юридических науках и так далее. Конечно же, этот термин встречается и в математике. Именно этот случай я собираюсь рассмотреть в ходе моего проекта. Обратным же переходом от общих рассуждений к частным является дедукция (Примером дедукции может послужить следующее выражение: «если сумма всех углов треугольника равна 180 градусам, то и сумма всех углов прямоугольного треугольника равна 180 градусам.»).

Индуктивный подход к решению обычно начинается с анализа и сравнения данных наблюдения. Многократность повторения какого-либо факта подводит к индуктивному обобщению. Однако, результат, полученный таким способом, нельзя назвать обоснованным, ведь известно множество случаев, когда этот способ не работал. Выходит, что индукция может привести как к верным выводам, так и к ложным.

Рассмотрим примеры ложной индукции:

1) Рассмотрим алгебраическое выражение $f(n) = n^2 + n + 41$ при натуральных значениях параметра n.

Возьмём n=1, 2, 3, 4, 5, ..., 39.

В таком случае все значения f(n) будут являться простыми числами 43, 47, 53, 61, 71,..., 1601 (т.е. числами, которые могут делиться только сами на себя, либо на единицу), в чем мы можем убедиться непосредственным вычислением. И вот, казалось бы, что формула простого числа найдена. Однако это не так. Леонард Эйлер (1601г.-1665г.) подставил следующее значение п и получил $f(40) = 41^2$, оно не является простым, поэтому утверждение в общем виде является ложным.

- 2) Было известно, что $(2^{p-1}-1)$ не кратно p^2 для любых простых чисел, которые меньше 1000. Основываясь на это, советский математик Дмитрий Александрович Граве (1863-1939) сделал предположение, что это верно и для всех простых чисел. Спустя много лет, используя мощные вычислительные машины, было доказано, что $(2^{1092}-1)$ делится нацело на 1093^2 , предположение советского математика было ошибочным.
 - 3) Рассмотрим алгебраическое выражение $f(n) = 2^{2^n} + 1$

Пьер Ферма (1707г.-1783г.), проведя непосредственные вычисления при значениях n=0,1,2,3,4, посчитал, что результат всех вычислений - простое число. Леонард Эйлер, как и в первом примере ложной индукции, подставил следующее число и опроверг утверждение Ферма. Действительно, $f(5)=2^{2^5}+1=641\cdot6700417$ - составное число.

4) Ученые долгое время пытались найти значение n для выражения $f(n) = 991n^2 + 1$, при котором f(n) является квадратом конкретного натурального числа. Они терпели многократные неудачи в своих поисках и предполагали, что таких значений n не существует. Но их предположения

оказались ложными. Недавно выяснилось, что при n=120557357903313594474425538767 $991n^2+1$ - квадрат числа n.

Данные примеры убедительно показывают, что утверждения, верные в целом ряде случаев, могут быть в то же время неверными вообще. В данных примерах вывод делается после разбора лишь нескольких значений переменной, не охватывающих всех возможных случаев. Такой метод называется неполной (несовершенной) индукцией. Этот метод, как мы заметили, не приводит к надёжным результатам, однако, он позволяет нам сформулировать гипотезу, которую мы сможем в дальнейшем доказать или опровергнуть. Полной же индукцией называется метод, который предполагает рассмотрение всех возможных случаев, на основании которых делается вывод.

Но каким же образом можно узнать, верно ли утверждение в общем случае, если известно, что утверждение верно в ряде частных случаев, а перебрать все значения попросту невозможно? Ответ на этот вопрос - метод математической индукции.

Метод математической индукции

Математической индукцией называется логический переход от верности ряда частных утверждений к общим выводам, т.е. от верности при конкретных значениях п к верности при любых натуральных значениях п. Метод математической индукции относится к одному из самых важных методов математических доказательств. С его помощью можно решать параметризованные некоторой переменной (переменной индукции) задачи на доказательство тождеств и неравенств, задачи на суммирование, задачи на делимость выражения на какое-либо число.

Теорема математической индукции формулируется таким образом:

Утверждение $\varphi(n)$ является верным при любых натуральных числах n, если выполняются два следующих условия:

- $1)\varphi(n)$ истинно при n=1 (База индукции или базис)
- 2) Возьмём утверждение при n=k за верное (Индуктивное предположение), тогда оно должно быть верным и при n=k+1 (Индуктивный переход).

Докажем эту теорему методом от обратного:

Сделаем предположение, что из выполнения условий теоремы следует, что утверждение верно не для каждого натурального числа. Значит существует n=m для которого утверждение $\varphi(m)$ есть ложное. Для любого n < m выражение будет истинным, так как m - первое число, при котором утверждение неверно. m>1 так как если n=1, то утверждение $\varphi(n)$ является верным. Из всего этого следует, что при m-1 утверждение $\varphi(m-1)$ является верным, а для следующего за числом m-1 числа m - ложно, что является противоречивым для верности индуктивного перехода в теореме математической индукции. Это противоречие доказывает, что из истинности условий теоремы математической индукции не может быть такого числа m, для которого утверждение $\varphi(m)$ неверно.

Теперь рассмотрим ситуации, когда один из пунктов теоремы математической индукции будет упущен:

1) Если мы упустим второй пункт теоремы, то итог будет крайне нелепым: будет выходить, что каждое утверждение, верное для единицы будет верно и для всех натуральных чисел. Например $2n + 1 \vdots 3$ будет истинно для единицы, но для числа 2 уже неверно.

2) Первый этап не менее важен. Если его упустить и начать доказывать истинность, например, выражения 2n+1 : 2, то уже на этапе индуктивного предположения возникнут странности, ведь 2k+1 не может быть четным, так как 2k- чётное число, а сумма четного числа и единицы не может являться чётной. С индуктивным переходом возникнет аналогичная ситуация, ведь 2(k+1)+1 тоже не может быть чётным. Выходит, что, если упустить первый пункт теоремы математической индукции, всё остальное попросту не будет иметь значения, так как мы попытались обобщить индуктивным переходом утверждение, в истинности которого для частных случаев предварительно не убедились.

Рассмотрим несколько примеров задач и их решения Метод математической индукции в решении задач на делимость.

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Если n — натуральное число, то число четное. При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , а 2k — четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность. Значит, четно при всех натуральных значениях n.

Доказательство тождеств

Доказать, что при любом натуральном п справедливо равенство

- 1) Проверим, что это тождество верно при n = 1.;- верно.
- 2) Пусть тождество верно и для n = k, т.е.
- 3)Докажем, что это тождество верно и для n = k + 1, т.е. Что и требовалось доказать.

Пример №1

Докажем, что $s_n = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}$ при любых натуральных значениях n

Сначала попытаемся выдвинуть какую-либо гипотезу, а затем попробуем доказать её верность.

$$s_n = a_1 + a_2 + a_2 + \dots + a_k + a_{k+1} + \dots + a_n$$
 , тогда вычислим:

$$s_1 = a_1 = \frac{1}{1 \cdot 2} = \frac{1}{2}$$

$$s_2 = a_1 + a_2 = s_1 + a_2 = \frac{1}{2} + \frac{1}{2 \cdot 3} = \frac{3+1}{2 \cdot 3} = \frac{2}{3}$$

$$s_3 = a_1 + a_2 + a_2 = s_2 + a_3 = \frac{2}{3} + \frac{1}{3 \cdot 4} = \frac{8+1}{3 \cdot 4} = \frac{3}{4}$$

Получаем закономерность, в которой в каждом следующем числе числитель и знаменатель увеличивается на единицу. Это можно записать в таком виде: $s_n = \frac{n}{n+1}$ (Гипотеза выдвинута).

Теперь проверим данную гипотезу по теореме МИ:

1) База индукции

Подставляем единицу вместо n в выражения a) $s_n = \frac{n}{n+1}$ и б) $s_n = \frac{1}{n(n+1)}$.

a)
$$s_1 = \frac{1}{1+1} = \frac{1}{2}$$

б)
$$s_1 = \frac{1}{1(1+1)} = \frac{1}{2}$$

2) Индукционное предположение

$$n = k$$

$$s_k = \frac{k}{k+1}$$

Докажем, что
$$s_{k+1} = \frac{k+1}{(k+1)+1} = \frac{k+1}{k+2}$$

$$s_k = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k \cdot (k+1)}$$

$$s_{k+1} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k \cdot (k+1)} + \frac{1}{(k+1) \cdot (k+2)}$$

Получается, что
$$s_{k+1} = s_k + \frac{1}{(k+1)\cdot(k+2)}$$
, т.е. $s_{k+1} = \frac{k}{k+1} + \frac{1}{(k+1)\cdot(k+2)} = \frac{k^2+2k+1}{(k+1)\cdot(k+2)} = \frac{(k+1)^2}{(k+1)\cdot(k+2)} = \frac{k+1}{k+2}$

Мы доказали, что $s_{k+1} = \frac{k+1}{k+2}$, т.е. доказали верность индуктивного перехода.

Оба условия теоремы оказались соблюдены, значит выражение $s_n = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}$ истинно при любых натуральных значениях n.

Пример №2

Докажем тождество
$$\frac{1}{1+x} + \frac{2}{1+x^2} + \dots + \frac{2^n}{1+x^{2^n}} = \frac{1}{x-1} + \frac{2^{n+1}}{1-x^{2^{n+1}}}$$

1) База индукции

Пусть n=1

Тогда в левой части будет $\frac{1}{1+x} + \frac{2}{1+x^2} = \frac{x^2 + 2x + 3}{(1+x)(1+x^2)}$;

В правой
$$\frac{1}{x-1} + \frac{2^2}{1-x^{2^2}} = \frac{1}{x-1} + \frac{4}{(1-x^2)(1+x^2)} = \frac{-(1+x)(1+x^2)+4}{(1-x)(1+x)(1+x^2)} = \frac{-x^3-x^2-x+3}{(1-x)(1+x)(1+x^2)} = \frac{\frac{(1-x)(x^2+2x+3)}{(1-x)(1+x)(1+x^2)}}{\frac{(1-x)(x^2+2x+3)}{(1-x)(1+x)(1+x^2)}} = \frac{x^2+2x+3}{\frac{(1+x)(1+x^2)}{(1-x)(1+x^2)}}.$$

База индукции оказалась верна.

2) Индукционное предположение

Пусть n = k, тогда

$$\frac{1}{1+x} + \frac{2}{1+x^2} + \dots + \frac{2^k}{1+x^{2^k}} = \frac{1}{x-1} + \frac{2^{k+1}}{1-x^{2^{k+1}}}$$

Докажем, что
$$\frac{1}{1+x} + \frac{2}{1+x^2} + \cdots + \frac{2^k}{1+x^{2^k}} + \frac{2^{k+1}}{1+x^{2^{k+1}}} = \frac{1}{x-1} + \frac{2^{(k+1)+1}}{1-x^{2^{(k+1)+1}}}.$$

$$\frac{1}{1+x} + \frac{2}{1+x^2} + \cdots + \frac{2^k}{1+x^{2^k}} + \frac{2^{k+1}}{1+x^{2^{k+1}}} = \frac{1}{x-1} + \frac{2^{k+1}}{1-x^{2^{k+1}}} + \frac{2^{k+1}}{1+x^{2^{k+1}}} = \frac{1}{x-1} + \frac{2^{k+1}}{1-x^{2^{k+1}}} + \frac{2^{k+1}}{1+x^{2^{k+1}}} = \frac{1}{x-1} + \frac{2^{k+2}}{1-x^{2^{k+2}}}.$$

Индуктивный переход оказался верен.

Оба условия теоремы оказались соблюдены, значит выражение $\frac{1}{1+x}$ +

 $\frac{2}{1+x^2}+\dots+\frac{2^n}{1+x^{2^n}}=\frac{1}{x-1}+\frac{2^{n+1}}{1-x^{2^{n+1}}}$ является истинным при любых значениях $n\in \mathbb{N}$.

Метод математической индукции в решении задач на геометрическую прогрессию.

Пример№3.

Докажем, что общий член геометрической прогрессии равен $a_n = a_1 \cdot q^{n-1}$, методом математической индукции.

1) Проверим, что данное утверждение верно при n = 1:

$$a_1 = a_1 \cdot q^0$$

$$a_1 = a_1 \cdot 1$$

$$a_1 = a_1$$

левая часть = правой части.

2) Предположим, что данное утверждение верно, при n = k:

$$a_k = a_1 \cdot q^{k+1}$$

3) И, докажем, что данное утверждение верно при n = k + 1:

$$a_{k+1} = a_1 \cdot q^k$$

Доказательство:

 $a_{k+1} = a_k \cdot q = a_1 \cdot q^{k-1} \cdot q = a_1 \cdot q^k$,что и требовалось доказать.

Оба условия принципа математической индукции выполняются и поэтому формула $a_n = a_1 \cdot q^{n-1}\,$ верна для любого натурального числа n.

Задачи реальной действительности

Имеется лестница, все ступени которой одинаковы. Требуется указать минимальное число положений, которые гарантировали бы возможность «забраться» на любую по номеру ступеньку.

Все согласны с тем, что должно быть условие. Мы должны уметь забраться на первую ступень. Далее должны уметь с 1-ой ступеньки забраться на вторую. Потом во второй – на третью и т.д. на n-ую ступеньку. Конечно, в совокупности

же «n» утверждений гарантирует нам то, что мы сможем добраться до n-ой ступеньки.

Посмотрим теперь на 2, 3,...., n положение и сравним их друг с другом. Легко заметить, что все они имеют одну и ту же структуру: если мы добрались до k ступеньки, то можем забраться на (k+1) ступеньку. Отсюда становится естественной такая аксиома для справедливости утверждений, зависящих от «n»: если предложение A(n), в котором n — натуральное число, выполняется при n=1 и из того, что оно выполняется при n=k (где k — любое натуральное число), следует, что оно выполняется и для n=k+1, то предположение A(n) выполняется для любого натурального числа n.

Применение метода математической индукции к суммированию рядов.

Доказать формулу

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^3$$
,

n - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

$$1^3 + 2^3 + 3^3 + \dots + k^3 = \left(\frac{k(k+1)}{2}\right)^2$$
.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} + \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^{3} = (k+1)^{2} \cdot \left(\frac{k^{2}}{4} + k + 1\right) = \left(\frac{k+1}{2}\right)^{2} (k^{2} + 4k + 4) = \left(\frac{(k+1)(k+2)}{2}\right)^{2}$$

Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример №4

В этой задаче нам требуется найти формулу суммы и доказать её верность.

$$S_n = \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots$$

Рассмотрим знаменатели и заметим закономерность 1, 4, 7, 10...

Эта последовательность ни что иное, как арифметическая прогрессия, где $a_1=1, d=3$ и $a_n=1+(n-1)\cdot 3=3n-2$, тогда $a_{n+1}=3n+1$. n-й член данного ряда будет равен $\frac{1}{(3n-2)(3n+1)}$.

Получим:

$$S_1 = \frac{1}{4}$$

$$S_2 = \frac{1}{4} + \frac{1}{4 \cdot 7} = \frac{2}{7}$$

$$S_3 = \frac{1}{4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} = \frac{3}{10}$$

Выходит, что числитель является номером n слагаемого, а знаменатель - арифметической прогрессией. В таком случае $S_n = \frac{n}{3n+1}$. Гипотеза выдвинута, теперь докажем её верность.

1) База индукции

$$n=1$$
 $rac{1}{1\cdot 4}=rac{1}{1\cdot (3+1)}$ $rac{1}{4}=rac{1}{4}=>$ база индукции верна

2) Индукционное предположение

$$n = k$$

$$S_k = \frac{k}{3k+1}$$

$$S_{k+1} = \frac{k+1}{3(k+1)+1} = \frac{k+1}{3k+4}$$

$$S_{k+1} = S_k + \frac{1}{(3k+1)(3k+4)} = \frac{k+1}{3k+4} + \frac{1}{(3k+1)(3k+4)} = \frac{(3k+1)(k+1)}{(3k+1)(3k+4)}$$
$$= \frac{(k+1)}{(3k+4)} = \frac{k+1}{3(k+1)+1}$$

Индуктивный переход является истинным.

Оба условия теоремы оказались соблюдены, значит выражение $S_n = \frac{n}{3n+1} \, \text{является истинным при всех натуральных значениях } n \; .$

Математическая индукция, начиная с определенного числа

Некоторые утверждения справедливы не для всех натуральных значений n, а лишь для натуральных n, начиная с некоторого числа p. Такие утверждения можно доказать немного изменённым методом математической индукции, но вполне аналогичным ему:

Утверждение $\varphi(n)$ будет верным при любых натуральных числах n, начиная с p, если выполняются два следующих условия:

- 1) Утверждение будет являться верным при n = p.
- 2) Из справедливости этого утверждения при n=k для $k\geq p$ будет вытекать верность утверждения при n=k+1.

Пример №5

Докажем, что при всех натуральных значений n>1 справедливо равенство $\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{9}\right)\cdot...\cdot\left(1-\frac{1}{n^2}\right)=\frac{1+n}{2n}.$

Если мы возьмём n=1, то утверждение будет неверным, так как в левой части мы получим $1-\frac{1}{1}=1-1=0$, а в правой $\frac{1+1}{2}=\frac{2}{2}=1$. $0\neq 1$.

1) База индукции

Возьмём n=2. В левой части будет $1-\frac{1}{2^2}=\frac{3}{4}$, а в правой $\frac{1+2}{4}=\frac{3}{4}$. $\frac{3}{4}=\frac{3}{4}$. База индукции верна.

2) Индуктивное предположение

Пусть
$$n = k$$
, тогда $\left(1 - \frac{1}{4}\right) \cdot \left(1 - \frac{1}{9}\right) \cdot \dots \cdot \left(1 - \frac{1}{k^2}\right) = \frac{1+k}{2k}$.

3) Индуктивный переход

$$n = k + 1, \left(1 - \frac{1}{4}\right) \cdot \left(1 - \frac{1}{9}\right) \cdot \dots \cdot \left(1 - \frac{1}{(k+1)^2}\right) = \frac{k+2}{2k+2}.$$

$$P_{k+1} = \left(1 - \frac{1}{4}\right) \cdot \left(1 - \frac{1}{9}\right) \cdot \dots \cdot \left(1 - \frac{1}{(k+1)^2}\right) = \frac{k+2}{2k+2}.$$

$$P_{k+1} = P_k \cdot \left(1 - \frac{1}{(k+1)^2}\right) = \frac{k+1}{2k} \cdot \frac{(k+1)^2 - 1}{(k+1)^2} = \frac{k+2}{2k+2}.$$

Индуктивный переход верен. Значит равенство справедливо для любого натурального n>1.

Индукция в неравенствах

С индукцией в неравенствах точно также, как и с обычной индукцией. Утверждение будет верно, если

- 1) $\varphi(n)$ истинно при n = 1.
- 2) Из верности $\varphi(k)$ следует, что и $\varphi(k+1)$ тоже верно.

Пример №6

Докажем, что $2^{n+1} > 2n + 1$ для любого натурального числа n.

1) База индукции

Пусть n=1. Тогда $2^2>2+1$ или 4>3.

База индукции истинна.

2) Индуктивное предположение

n = k, тогда $2^{k+1} > 2k + 1$.

$$n = k + 1$$
, тогда $2^{k+2} > 2k + 3$.

Из индуктивного предположения $2^{k+1} > 2k+1$, умножаем левую и правую части неравенства на 2.

$$2(2^{k+1}) > 2(2k+1).$$

$$2(2^{k+1}) > (2k+3) + (2k-1).$$

Если a > b + c, то в таком случае a > b при c > 0.

Из этого следует, что 2k-1>0 при k>1 $2^{k+2}>2k+3$.

Итак, мы доказали истинность базы индукции и индуктивного перехода, таким образом $2^{n+1} > 2n+1$ для любого натурального числа n.

Заключение.

Итак, индукция (от лат. inductio — наведение, побуждение) — одна из форм умозаключения, приём исследования, применяя который от знания отдельных фактов приходят к общим положениям. Индукция бывает полная и неполная. Метод неполной индукции состоит в переходе к универсальной формулировке после проверки истинности частных формулировок для отдельных, но не всех значений п. Применяя полную индукцию, мы лишь тогда считаем себя вправе объявить об истинности универсальной формулировки, когда убедились в её истинности для каждого без исключения значения п. Метод математической индукции — метод доказательства, основанный на принципе математической индукции. Он позволяет в поисках общего закона испытывать гипотезы, отбрасывать ложные и утверждать истинные. Метод математической индукции является одной из теоретических основ при решении задач на суммирование, доказательстве тождеств, доказательстве и решении неравенств, решении вопроса делимости, при изучении свойств числовых последовательностей, при решении геометрических задач и т. д.

Знакомясь с методом математической индукции, я изучала специальную литературу, консультировалась с педагогом, анализировала данные и решения задач, пользовалась ресурсами интернета, выполняла необходимые вычисления.

Вывод

В ходе работы я узнала, чтобы решать задачи методом математической индукции нужно знать и понимать основной принцип математической индукции.

Достоинством метода математической индукции является его универсальность, так как с помощью этого метода можно решить многие задачи. Недостатком неполной индукции является то, что порой она приводит к ошибочным выводам.

Обобщив и систематизировав знания по математической индукции, я убедилась в необходимости знаний по теме «метод математической индукции». Кроме того эти знания повышают интерес к математике, как к науке.

Так же в ходе работы приобрела навыки решения задач по использованию метода математической индукции. Считаю, что эти навыки помогут мне в будущем.

Библиографический список

- 1. Баранова И.В., Ляпин С.Е. «Задачи на доказательство по алгебре», Уч. изд. л. Типография №3,1954.-159с.
- 2. Соминский И. С. «Метод математической индукции.» Наука, 1965. Т. 3. - 58 с.
- 3. Шахмейстер А. Х. «Доказательства неравенств. Математическая индукция. Теория сравнений. Введение в криптографию.» СПб.: «Петроглиф»: «Виктория плюс»: М.: Издательство МЦНМО, 2018.-396 с.
- 4. Шень А. «Математическая индукция». 6-е изд., стереотип. М.: МЦНМО, 2019.-32 с.: ил.
 - 5. Ивлев Б.М., Абрамов А.М., Дудницин Ю.П., Шварцбурд С.И. М.: Просвещение, 1990г.
- 6. Соминский И.С. Метод математической индукции. Популярные лекции по математике, выпуск 3-М.: Наука, 1974г.
- 7. Боковнев О. А., Фирсов В. В., Шварцбурд С. И. Избранные вопросы математики. 9 класс. Факультативный курс.-М.: Просвещение, 1979г.
 - 8. https://www.matburo.ru/ex_dm.php?p1=dmmmi [Электронный ресурс]
 - 9. http://www.mi-ras.ru/~podolskii/files/lecture1.pdf [Электронный ресурс]
- 10.https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0
 %BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0
 %D1%8F_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%
 D1%8F [Электронный ресурс]
- 11. https://zaochnik.com/spravochnik/matematika/stati/metod-matematicheskoj-induktsii/ [Электронный ресурс]