Я выращиваю кристаллы

Выполнила: **Фомичева Наталья Сергеевна** учащийся 4 класса МБОУ школа №7, Россия, г. Дзержинск

Руководитель: Константинова Виктория Владимировна учитель начальных классов, высшей категории МБОУ школа №7, Россия, г. Дзержинск

ВВЕДЕНИЕ

В один из зимних выходных дней мы гуляли в лесу и начался сильный снег. Мы стали подставлять наши руки и ловить снежинки. Если снежинка падала на тёплую руку, то сразу же таяла и превращалась в воду. Если руки были в варежках, то снежинки ложились и их можно было рассмотреть. Они были очень красивы и их узор не повторялся. Это было очень удивительно и вызывало восторг. Снежинки — это красивое, сложное и уникальное явление природы.

Придя домой, я нашла информацию про снежинку — это не замерзшие дождевые капли, а кристаллы снега. Они возникают в процессе роста кристаллов. Снежные кристаллы образуются, когда испарения воды конденсируются непосредственно в лёд, что случается в облаках. То есть с неба на нас летят кристаллы, узоры на окнах в морозный день — это тоже кристаллы.

Так что же такое кристаллы? Где еще они могут встречаться в нашей жизни? И можно ли их получить в домашних условиях?

Чтобы получить ответы на эти вопросы, я решила выбрать эту тему для своей исследовательской работы.

<u>Цель исследования</u>: Изучение технологии выращивания кристаллов в домашних условиях.

Задачи исследования:

- 1. Узнать, что такое кристалл;
- 2. Изучить, как выращивают кристаллы;
- 3. Попробовать вырастить кристалл в домашних условиях.

ОСНОВНАЯ ЧАСТЬ

1. Кристаллы и их свойства

Возможно, вы считаете, что кристалл — это драгоценный камень в мамином колечке или серьгах, а может он ещё магический и волшебный. В этом есть доля правды. Но не все кристаллы красивы, как изумруды и бриллианты. Если взять отдельную частицу соли и сахара, то это тоже кристалл. Многие вещества вокруг нас — это кристаллы.

Кристалл — это твёрдое состояние вещества. Он имеет определённую форму и определённое количество граней. Кристаллы подразделяются на моно-и поликристаллы.

Монокристаллы – это одиночные кристаллы.

Поликристаллы — это множество кристаллов имеющих неправильную форму, т.к. в процессе выращивания они мешают друг другу расти.

Формы кристаллов бывают разными (Приложение 1).

Правильное расположение частиц определяет свойства кристалла. Я решила рассмотреть на примере чёрного графита и алмаза. И алмаз, и графит – это кристаллы углерода, но с разным расположением атомов. Данные о свойствах свела в таблицу.

Таблица 1. Свойства кристаллов углерода.

Свойства	Графит	Алмаз
Цвет	Чёрный, не прозрачный	Прозрачный
Macca	Лёгкий	Вдвое тяжелее графита
Прочность	Мягкий минерал, но	Самое твёрдое вещество, но
	гибкий	хрупкий
Электропроводность	Проводит	Не проводит электрический
	электрический ток	ток

ВЫВОД: кристаллы, полученные даже из одних и тех же частиц, обладают разными свойствами.

2. Кристаллы в природе

В природе существует большое множество веществ, состоящих из кристаллов. Например, гранит, мрамор, песчаник. Мельчайшие кристаллы были найдены в глине, каучуке, саже, костях, волосах, волокнах шерсти, шёлка, целлюлозы.

Наши дома построены из камня и железа, т.е. из кристаллов. Самолёты, поезда, корабли, автомобили, инструменты, гвозди и многое другое сделаны из металла, тоже кристаллов.

Каждый день мы едим кристаллы: сахар, соль. Каменную соль мы употребляем в пищу в виде мелкого порошка, а в природе она встречается в виде громадных глыб. Построены фабрики по её переработке в порошок и очистке.

В морях и океанах существуют целые острова из кораллов, созданных самой природой из скелетов беспозвоночных животных. Кораллы тоже относятся к кристаллам.

Интересный факт, некоторые виды моллюсков обладают способностью наращивать на инородном теле перламутр, так появляется жемчуг.

Оказывается, в любом месте можно встретить кристаллы, не только на Земле, но и в космосе. На Землю падают метеориты, а ученые, которые их изучают, подтвердили, что они состоят из кристаллов.

ВЫВОД: кристаллы широко используются во всех сферах нашей жизни — медицине, компьютерной технике, пищевой, химической, металлургической промышленности и в быту.

3. Способы получения кристаллов

Процесс образования кристалла называется кристаллизацией. Он возможен 2-мя путями:

- естественный образование кристаллов в природе;
- искусственный образование кристаллов в лабораторных условиях при участии человека с использованием сложного дополнительного оборудования.

Рассмотрим более подробно естественный процесс кристаллизации.

В природе примером кристаллизации из **расплава** является образование льда из воды, а также образование вулканических пород; из растворов — соль, выпавшая из морской воды; из пара — снежинки и иней.

Распространенными способами искусственного выращивания кристаллов является кристаллизация из **раствора и из расплава**.

При кристаллизации из насыщенного раствора кристаллы растут при медленном испарении растворителя или при медленном понижении температуры.

При нагреве твёрдое вещество переходит в жидкое состояние — расплав. Температура, при которой вещество меняет своё состояние, называется температурой плавления. Как правило, температура плавления очень высока. Например, для получения кристалла рубина нужно расплавить порошок оксида алюминия, а для этого его надо нагреть до температуры 2030 °C. В этом состоит сложность при выращивании кристаллов.

4. Выращивание кристаллов в домашних условиях

4.1 Выращивание кристаллов из разных исходных материалов

Изучив разные источники информации, я выяснила, что кристаллы дома можно получить из насыщенных растворов соли, сахара, соды, лимонной кислоты, медного купороса, а вот с серой лучше дома не работать из-за опасных выделяющихся газов. А также можно добавить краситель в насыщенный раствор и наблюдать каким образом он повлияет на готовый кристалл.

Я продумала последовательность моих действий при выращивании кристаллов:

- 1. Приготовить насыщенный раствор из очищенной или дистиллированной воды, немного подогревая.
- 2. Фильтровать полученный раствор.
- 3. Оставить медленно остывать, для получения затравки.

- 4. Выбрать самый красивый кристалл и еще раз отфильтровать раствор.
- 5. Поместить в раствор один кристаллик и оставить на 5-7 дней в тёмном месте без сквозняков.
- 6. Повторять пункты 4 и 5 каждые 5-7 дней.
- 7. По мере появления мелких кристаллов на поверхности крупного, удалить их с помощью пинцета.
- 8. Чтобы кристалл не разрушился после завершения процесса кристаллизации, его надо покрыть бесцветным лаком для ногтей или волос.

Я нашла рецепт для приготовления насыщенных растворов: вода 100 мл, лимонная кислота 200 г (поваренная соль 200г или медный купорос 200г). Я решила в насыщенный раствор сахара добавить краситель.

Мама купила мне все нужные вещества и материалы. Мама купила мне все нужные вещества и материалы.

Первые сложности у меня появились практически сразу. Насыщенные растворы из сахара и лимонной кислоты, по найденному рецепту, получились быстро, а вот процесс растворения соды и соли в воде занял много времени и потребовал многократного подогрева растворов.

В результате соль и сода в данном количестве воды у меня растворились не полностью. Я пришла к выводу, если уже вещество не растворяется в воде, то у меня уже получился насыщенный раствор.

В растворы соли и лимонной кислоты я кинула по крупному кристаллу (затравка) и оставила для дальнейших наблюдений.

Для выращивания цветных кристаллов на палочке из сахара, в раствор я добавила пищевой краситель «Вишня». Палочки обмакнула в сироп, а затем в сахар и дала им подсохнуть. Затем эти палочки опустила в сироп.

А раствор соды, я разлила по двум разным баночкам и соединила их шерстяной ниточкой.

Далее все ёмкости с растворами накрыла бумагой и убрала в тёмное место без сквозняков – в шкаф.

Проверять буду каждые 6-7 дней.

Через неделю наблюдаем, как наши кристаллы выросли.

Лимонная кислота

Caxap

Из соды крупные кристаллы не выросли. Вода вся испарилась и мелкие кристаллы осели на дне банок, её краях и нитке.

Из больших кристаллов соли и лимонной кислоты я сделала затравку (привязала на нитку) и поместила в насыщенный раствор для дальнейшего роста.

Еще через неделю наши кристаллы изменились.

Соль

Лимонная кислота

Caxap

Caxap

Особый интерес вызвали кристаллы из окрашенного раствора сахара. Как только их вытащила из раствора, я наблюдала на них слабую окраску. Я решила их подержать под водой. Краска смылась и они оказались прозрачными, как первоначальный раствор.

Во время проведения опыта я пришла к выводу, что:

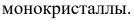
- Кристаллы из насыщенных растворов растут разные по размеру и форме.
- Если добавить краситель в раствор, то не всегда кристаллы вырастут цветными.
- У всех веществ есть зависимость растворимости от температуры (при более высокой температуре растворимость больше).
 - Одни кристаллы растут хорошо, а другие плохо.

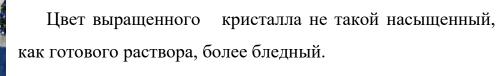
4.2 Выращивание кристаллов из наборов, купленных в магазине

Перед началом работы я изучила инструкцию. В обоих наборах написано, что кристаллы выращивают в течение 4х часов.

В комплект одного набора входят картонная основа и

готовый химический раствор (вещество не указано).


В начале работы я собрала основу — Белоснежку. Затем установила её в специальную



ёмкость и налила готовый раствор.

Первые кристаллы появились через 2 часа. Готовый результат через 4 часа представлен на фото.

Я заметила, что полученный кристалл похож на мох, а не на отдельные

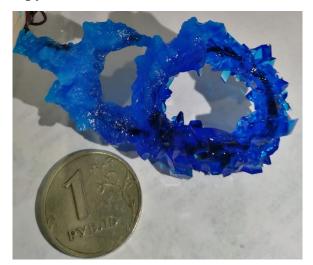
Второй набор предназначен для выращивания кристаллических скульптур. Поэтому в набор входит проволока, нить, деревянная палочка и медный купорос

кристаллический. То есть из него нам надо приготовить насыщенный раствор, а из проволоки и нити сделать фигурку.

Фигурку сначала смачиваем в растворе и обмакиваем в сухом медном купоросе. Затем помещаем в насыщенный раствор так, чтобы она не касалась стенок и дна ёмкости.

Через 2 и 4 часа я вынула фигурку из раствора и поняла, что все кристаллики с нее опали, а новые еще не образовались. Поместила опять в

раствор и оставила на сутки. По истечении этого времени, на ниточке начали образовываться новые кристаллики и их было много.


Через 3 дня моя фигурка была уже очень красива.

Через 10 и 17 дней кристаллы стали крупнее.

В работе с этим набором, я наблюдала как образуются поликристаллы неправильной формы. Их цвет был очень насыщенным и ярким. Я заметила, что кристаллы из медного купороса при отсутствии раствора изменяют цвет, теряют прозрачность.

ВЫВОД: из наборов, купленных в магазине, можно вырастить поликристаллы, они получаются неправильной формы. Интенсивность цвета зависит от используемых материалов.

ЗАКЛЮЧЕНИЕ

В ходе работы над проектом, я нашла ответы на поставленные вопросы, изучила способы выращивания кристаллов и смогла вырастить кристаллы из соли, сахара, соды, лимонной кислоты и медного купороса.

Изучив теорию, я поняла, что вырастить монокристалл очень сложно. Все отклонения от нужной температуры, от нужной чистоты раствора привели к тому, что у меня получились поликристаллы.

Во время опыта я вела наблюдения и пришла к выводу, что:

- Кристаллы в домашних условиях вырастить можно.
- При одинаковых условиях внешней среды кристаллы растут разные по размеру, форме и цвету.
- Если добавить краситель в раствор, то не всегда кристаллы вырастут цветными.
- У всех веществ есть зависимость растворимости от температуры (при более высокой температуре растворимость больше).
- Одни кристаллы растут хорошо, а другие плохо.

СПИСОК ЛИТЕРАТУРЫ

- 1 Электронная детская энциклопедия, том 2, раздел «В лаборатории природы», глава «Мир кристаллов» (http://de-ussr.ru/zemnaya-kora/lab-prirody/mir-rrist.html)
- 2 Электронная детская энциклопедия, том 2, раздел «В лаборатории природы», глава «Строение и свойства кристаллов» (http://de-ussr.ru/zemnaya-kora/lab-prirody/sv-krist.html)
 - 3 Шаскольская М. П.. Кристаллы. М.: Наука, 1985. 208 с.

Приложение 1. Формы кристаллов

Название формы	Вид	Описание
Тетраэдр		Тетра (4) + эдр (грань) = четырёхгранник, каждая грань которого в виде правильного треугольника
Гексаэдр		Гекса (6) + эдр (грань) = шестигранник, каждая грань которого в виде квадрата
Октаэдр		Окта (8) + эдр (грань) = восьмигранник, каждая грань которого в виде правильного треугольника
Ромбододекаэдр		Ромбо (в виде ромба) +додека (12)+эдр (грань) = двенадцатигранник, каждая грань которого в виде ромба
Пентагон-додекаэдр		Пента (5) + гон (угол) + двенадцатигранник = двенадцатигранник, каждая грань которого в виде пятиугольника