Научно-исследовательская работа Биология

Песчано-солевые смеси и их влияние на окружающую среду

Выполнил(а):

Коренкова Валерия Дмитриевна

учащий(ая)ся 9-А класса

Муниципального бюджетного общеобразовательного учреждения «Средняя общеобразовательная школа Закрытого Административно-Территориального Образования Видяево»

Руководитель:

Осипова Ольга Владимировна,

учитель биологии и экологии, Муниципального бюджетного общеобразовательного учреждения «Средняя общеобразовательная школа Закрытого Административно-Территориального Образования Видяево»

Оглавление

Введение	3
Задачи	
Методы и приемы	
Глава I. Опасная соль для человека и окружающего мира	4
1.1. Техническая соль для посыпки дорог	4
Глава II.Условия и методика проведения исследований	5
2.1.Место проведения опытов, используемое оборудование,	используемые
материалы, методы исследований	5
Глава III.Проведение исследования	6
3.1.Опыт №1	6
3.2.Опыт №2	7
3.3.Опыт №3	7
3.4.Опыт №4	7
3.5.Опыт №5	
Заключение	8
Список литературы	10
Приложения	11-19

Введение

С незапамятных времен каменная соль вошла в обиход человека. В быту мы ее называем просто солью, в химии - хлорид натрия. Происхождение слова соль связано с Солнцем: старинное славянское название Солнца - Солонь; «идти посолонь» (старинное выражение), которое означает: «идти по Солнцу». Без соли не может жить ни один живой организм, человек может выдержать полное отсутствие соли не более 10-11 дней. Добыча поваренной соли осуществлялась еще за 3-4 тысячи лет до нашей эры. Соль выпаривают из воды, добывают ИЗ недр земли, ИЗ морской воды, запасы соли практически неисчерпаемы(Приложение 1).

После поездок в город Мурманск, я стала замечать белые «разводы» на обуви, это проступала соль! И я задумалась о непривычном применении соли.

Тема работы: песчано-солевые смеси и их влияние на окружающую среду.

Актуальность работы в том, что в жизни есть простые вещи, которым мы не придаем большого значения и воспринимаем, как само собой разумеющиеся. К таким же вещам можно отнести пищевую соль. Человек приправляет свою пищу солью и без этого обходиться не может. Соль всегда имела для человека огромное значение и ценилась очень дорого. А где же ещё можно применить соль, кроме пищи? Соль используют и в качестве реагента, предотвращающего возникновение гололедицы, и мы попытались путем эксперимента выяснить, а как это влияет на окружающую среду, на обувь, которую мы носим, на резину автопокрышек и кузов автомобиля, а также найти альтернативу соли в применении против гололедицы.

Объект исследования: пескосоль (песчано-соляная смесь).

Предмет исследования: влияние песчано-солевой смеси на:

- 1. Искусственные и натуральные материалы.
- 2. Растения.
- 3. Металлические гвозди.

Гипотеза исследования: если часто обрабатывать дороги песчано-солевой смесью, можно наблюдать отрицательное воздействие на окружающую среду.

Цель работы: оценка состояния различных объектов после использования песчано-солевой смеси.

Задачи:

- Изучить и подобрать доступную информацию о пескосоли и методах ее применения.
- Провести опыты для определения степени воздействия соли и влияния её на определенные материалы и растения.
- Сделать выводы из своих наблюдений.
- Предложить альтернативу использования соли на дорогах против гололедицы.

Методы и приёмы:

- Анализ научной литературы и интернет-ресурсов по теме исследования.
- Наблюдение.
- Сбор материала для проведения опыта.
- Эксперимент (опыты).
- Анализ результатов.

Глава I. Опасная соль для человека и окружающего мира

Оказывается, несмотря на свою пользу, соль может нанести большой вред и здоровью человека, и окружающему миру. Если человек употребляет слишком много соли, то у него могут возникнуть проблемы с почками, сердцем, с суставами, поднимается кровяное давление, начинаются головные боли и развиваются различные сердечно-сосудистые заболевания.

Соль понижает температуру таяния снега и льда. Техническую соль используют при борьбе с обледенением на трассах и дорогах города. Использование реагентов резко сокращает автомобильные аварии и травмы пешеходов при падении на дорогах. На этом основано посыпание солью проезжей части и тротуаров при гололеде. Для окружающей среды это вредно, большое количество соли попадает в почву, реки и озёра.

1.1. Техническая соль для посыпки дорог

<u>Пескосоль</u> — это соляная смесь, которая разъедает автомобильные шины и портит металлические части машин. Металл ржавеет, машину приходится часто ремонтировать. Подобным образом портится и наша обувь (Приложение 2).

Частое использование соли на скользких улицах вредит окружающей среде. От соли страдает растительность и особенно деревья. Соль с большим количеством натрия хлорида уплотняет землю и уничтожает важные питательные вещества. Соль, которая проникает в корни деревьев, приводит к преждевременному опадению листьев и к разным болезням растений. Очевидными последствия станут уже летом. Как утверждают эксперты лесного хозяйства, из-за недостатка питательных веществ и уменьшения потребления воды, деревья стают более слабыми. Все меньше листьев могут осуществлять фотосинтез. А кроме листьев отмирают и ветки деревьев. Именно поэтому деревья за городом более здоровые и живые, чем в мегаполисе.

В Мурманске дороги посыпают смесью песка и соли - пескосолью (состав: *песка 70%, хлористого натрия 30%.*). Песок — это абразив, обеспечивающий хорошее сцепление, а техническая соль плавит лед. Соотношение частей зависит от температуры воздуха. В теплую погоду соли нужно меньше, и наоборот. Эта смесь — дешевая и эффективная, но не лишена недостатков. Песок, который остается на дороге, попадает в канализацию и засоряет её, а техническая соль разъедает обувь, вызывает коррозию металла автомобиля и наносит вред окружающей среде. Как утверждают дорожники, пескосоляная смесь — это идеальный состав для использования в наших северных условиях (Приложение 3).

<u>Галит</u> - соль техническая – концентрат минеральный находит свое применение в различных областях деятельности человека: в сельском хозяйстве, животноводстве, медицине, легкой, тяжелой и химической промышленностях.

Соль (галит) используют в котельных для очистки воды, при изготовлении различных красителей и бурении нефтяных скважин. Широкое применение соль техническая (галит) получает в холодный зимний период, как противогололедный реагент (соль техническая высшего сорта). Состав:

массовая доля хлористого натрия - 93-97%; массовая доля хлористого магния-0,3%; массовая доля хлористого калия-2,7%; массовая доля сернокислого кальция - 3,3 %.

Он является самым популярным среди других реагентов. При посыпке соль техническая галит образует так называемый рассол, который предотвращает образование льда на дорогах (Приложение 4).

Глава II. Условия и методика проведения исследований

2.1. Место проведения, используемое оборудование, используемые материалы, методы исследований

Место проведения опытов, оборудование, используемые материалы.

1. Реагент, собранный на дороге по маршруту:

- а) п. Видяево г. Кола;
- б) г. Кола г. Мурманск;
- в) г. Мурманск, пешеходная зона возле гипермаркета «Окей»;
- 2. Ёмкости для проведения опытов с маркировкой (пластиковые, прозрачные). Каждая ёмкость промаркирована с указанием места, где был собран реагент.

3. Материалы, используемые в исследовании:

- а) натуральная кожа;
- б) натуральная замша;
- в) натуральный мех;
- г) искусственная кожа (дерматин);
- д) резина;
- е) лук (пророщенный);
- ж) металлические гвозди.

4. Место проведения экспериментов (опытов):

МБОУ СОШ ЗАТО Видяево, кабинет биологии.

Глава III. Проведение исследования

3.1. Опыт №1

В состав пескосоляной смеси входит минеральная соль галит (NaCl - химическая формула). Чтобы выявить это - раствор пескосоли подвергли фильтрации.

Чтобы доказать наличие катионов Na⁺,отфильтрованный раствор выпарили (Приложение 7) и поместили в пламя горелки (спиртовки), в результате пламя окрашивается в желтый цвет (Приложения 5,8). Качественной реакцией на анион Cl⁻ (хлора) является взаимодействие с нитратом серебра (AgNO₃-химическая формула). Уравнение реакции

Выпал осадок белого цвета

(Приложение 5,6)

Таким образом, мы доказали, что в состав пескосоли входит минеральная соль галит.

3.2. Опыт №2

Для определения «намокаемости» и влияния пескосоли на различные материалы был проведен опыт. Мы взяли натуральную кожу, натуральную замшу, натуральный мех, искусственную кожу (дерматин) и резину, разрезанные на небольшие квадраты. Предварительно мы их взвесили для определения массы материалов до и после обработки пескосолью (Приложение 9). Затем образцы материалов были помещены в раствор пескосоли (Приложение 10) и снова взвешены (Приложение 11). После высыхания, масса материалов не изменилась (Приложение 11).

Результаты исследования приведены в таблице (Приложение 12). По результатам проведенного исследования, можно сделать следующие выводы: наибольшей деформации, потере блеска и эластичности подверглись натуральная кожа, натуральная замша и натуральный мех. Искусственная кожа (дерматин) и резина не потеряли свои изначальные свойства (Приложение 13). Реагенты собранные в разных местах обладают одинаковыми свойствами.

3.3. Опыт №3

Чтобы выяснить, защищают ли современные средства обувь из натуральной кожи, мы с мамой провели следующий эксперимент.

В выходные отправились в г.Мурманск. Мама носила обувь, не обработанную средствами защиты, а я обработала свои ботинки средством **«TWIST»** (экстра защита от влаги, грязи и соли, для обуви из кожи и замши) (Приложение 14). Через 24 часа я сравнила обувь мамы и свою. На сапогах мамы появился белый налет (кристаллы соли), а мои ботинки остались гладкими и без налета. (Приложение 15).

Современное производство предлагает массу средств для защиты обуви, они могут быть дорогими и не очень. Эти средства помогают защитить нашу обувь в период зимы и сохранить ее в порядке (Приложение 16).

3.4. Опыт №4

Для определения влияния раствора пескосоли на рост и развитие растений был проведён следующий опыт: 2 луковицы поместили в ёмкость с водой, дождались появления корней и зеленых «перьев» высотой 25 см. (Приложение 17).

Затем корни одной из луковиц мы поместили в ёмкость с раствором пескосоли (Приложение 18). Вторую луковицу опустили в обычную воду. Спустя 10 дней после начала опыта, у луковицы, помещенной в раствор пескосоли, практически полностью высохли зеленые «перья» (Приложение 19). Из этого эксперимента мы можем сделать следующее заключение: влияние раствора пескосоли пагубно для зеленых насаждений вдоль дорог и улиц наших городов, а значит, губительно и для многих других живых организмов, так как соль вредит корневой системе и мешает нормальному фотосинтезу растений, что приводит к разрушению озонового слоя и вырабатыванию кислорода.

3.5. Опыт №5

В этом опыте определяем влияние пескосоляного раствора и дистиллированной воды на металл (Приложение 20).

Для опыта нам понадобились обычные гвозди. Мы погрузили их в соляной раствор и дистиллированную воду. На второй день гвозди начали ржаветь, а на стыке раствор-воздух появились кристаллы соли, которые нарастали с каждым днем. Цвет воды изменился. Вода приобрела желтый оттенок. На седьмой день вода стала бурой. Гвозди покрылись плотным слоем ржавчины (Приложение 21).

После извлечения гвоздей из раствора и дистиллированной воды мы очистили ржавый налет металлической губкой. На металле, погруженном в соляной раствор, мы увидели глубокие следы коррозии. На металле, погруженном в дистиллированную воду, следов коррозии нет (Приложение 22).

Вывод: пескосоляная смесь, которой посыпают дороги, разрушает металл автомобиля.

Заключение

Практическая значимость исследования

- Проведена оценка состояния различных материалов после обработки пескосолью.
- Данные, полученные в ходе исследования, позволяют проследить негативные тенденции на рост и развитие растений, обусловленные систематическим использованием пескосоли.

В нашем поселке для посыпания дорог и пешеходных зон используется обычный песок, без каких- либо примесей. Он безопасен для экологии, но засоряет канализации при таянии снега весной.

В Германии, Норвегии и Финляндии запрещено использовать соль на дорогах. Дороги посыпают гранитной и мраморной крошкой, которую потом собирают и используют в следующий зимний сезон. Эксперты лесного хозяйства настойчиво рекомендуют избегать использование соли для снега и гололеда. Конечно же, это значительно дешевле, чем другие средства, но стоит ли жертвовать нашим здоровьем?

Именно поэтому следует использовать песок, мелкий щебень и гранулированные продукты. При этом нужно обращать внимание на состав и выбирать только те средства, которые не содержат соль.

В Мурманской области уже есть способ использования альтернативной технологии – в Полярных Зорях. Там посыпают дороги мелкой дробленой галькой, щебенкой. Она собирается после сезона и используется на следующий год. Во-первых, это очень большая экономия средств. Мы же сейчас сотнями тонн высыпаем на улицы песок, потом его собираем и выбрасываем. И столько бед он, действительно, приносит. Те же газоны мы не можем реанимировать после зимнего периода, все надо высаживать заново.

Таким образом, изучив информацию и проделав опыты, можно дать практические советы и рекомендации:

- использовать более современные антигололедные реагенты, такие как «Биодор» и «ЭСБГ»;
- использовать мраморную или гранитную крошку (Приложение 23);
- соблюдать нормы (допустимую дозу) и концентрацию, а также технологию распыления;
- обрабатывать улицы до выпадения осадков;
- мыть дорожное полотно специальными чистящими средствами;
- в составе асфальтобетонной смеси применять наполнитель «Грикол», который придает покрытию дороги антигололедные свойства;
- обувь, наименее подвергающуюся воздействию соли изготавливают из искусственных материалов. Но носить лучше обувь из натуральной кожи и замши, и её следует защищать различными средствами, специально предназначенными для этой цели.

Список литературы

- 1. Неумывакин И.П. «Соль. Мифы и реальность», изд. «Диля», 2017.
- 2.Вагнер Ганс «Тайные коды кристаллов соли», изд. АСТ, 2008.
- 3. Большая медицинская энциклопедия/ гл. ред. Б.В. Петровский. 3-е изд. М.: Советская энциклопедия, 1988.
- 4. <u>www.tv21.ru</u>
- 5. http://fb.ru
- 6. http://www.inguide.ru
- 7. http://www.spbsalt.ru.
- 8. <u>http://fb.ru/article/176905/peskosolyanaya-smes---prigotovlenie-primenenie-</u>harakteristiki

приложения

Приложение 1

Добыча морской соли

Приложение 2

Обувь, после ношения на тротуарах, посыпанных пескосолью

Приложение 3

Смесь песчано-соляная « Пескосоль»

Приложение 4

Соль техническая (минеральный галит)

Приложение 5

Определение ионов

Определяемый ион	Реактив, содержащий ион	Результат		
-	_	реакции		
\mathbf{H}^{+}	Индикаторы	Изменение окраски		
$\mathbf{A}\mathbf{g}^{+}$	Cl	Белый осадок		
Cu ²⁺		Синий осадок Черный		
	OH-	осадок. Окрашивание		
	\mathbf{S}^{2-}	пламени в сине-зеленый		
		цвет		
		Зеленоватый осадок,		
Fe ²⁺	OH-	который с течением времени		
		буреет		
Fe ³⁺	OH.	Осадок бурого цвета		
Zn ²⁺		Белый осадок,		
	OH-	при избытке ОН-		
	\mathbf{S}^{2} -	растворяется		
		Белый осадок		
Al ³⁺		Белый желеобразный		
	OH-	осадок, который при		
		избытке ОН растворяется		
NH ⁺ 4	OH-	Запах аммиака		
Ba ²⁺		Белый осадок		
	SO ²⁻ 4	Окрашивание пламени в		
		желто-зеленый цвет		
		Белый осадок		
Ca ²⁺	CO ²⁻ 3	Окрашивание пламени в		
		кирпично-красный цвет		
Na ⁺		Цвет пламени - желтый		
K ⁺		Цвет пламени фиолетовый		
K		(через кобальтовой стекло)		
Cl	$\Lambda \alpha^+$	Белый осадок		
	$\begin{array}{c} \mathbf{Ag^+} \\ \mathbf{H_2SO_4} \end{array}$	Выделение бесцветного газа		
	112504	с резким запахом (H Cl)		
Br ⁻	$\mathbf{A}\mathbf{g}^{\scriptscriptstyle{+}}$	Желтоватый осадок		
	H ₂ SO ₄	Выделение SO ₂ и Br ₂ (бурый		
	112504	цвет)		
I ⁻	$\mathbf{A}\mathbf{g}^{\scriptscriptstyle +}$	Желтый осадок		
	H ₂ SO ₄	Выделение $\mathbf{H_2S}$ и $\mathbf{I_2}$		
	112504	(фиолетовый цвет)		
SO ²⁻ 3	\mathbf{H}^{+}	Выделение SO ₂ -газа с		
	11	резким запахом,		

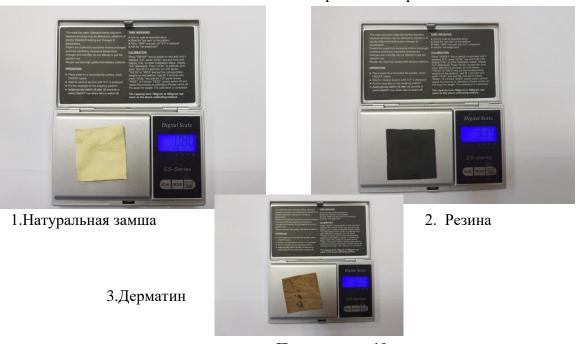
обесцвечивающего раствор фуксина и фиолетовых чернил

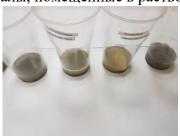
Приложение 6

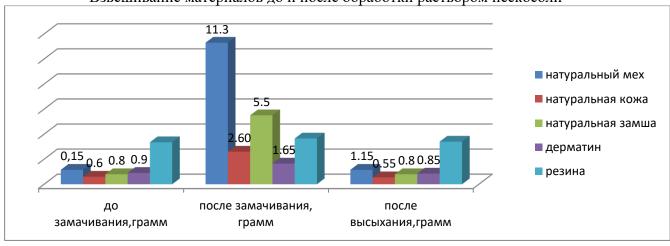
Начало опыта по определению состава пескосоляной смеси

Приложение 7

Фильтрация


Выпаривание

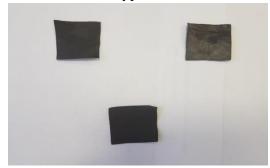

Приложение 8 Галит, помещенный в пламя горелки(спиртовки) - пламя желтого цвета


Приложение 9 Взвешивание образцов материалов

Приложение 10 Материалы, помещенные в раствор пескосоли

Приложение 11 Взвешивание материалов до и после обработки раствором пескосоли

Приложение 12 Результаты обработки материалов пескосолью


Материал	Блеск		Эл	Эластичность		Деформация	Намокаемость	
	До опыта	После опыта	До опыта	После опыта	До опы та	После опыта	До опыта	После опыта
Натуральный мех	присутствует	потерян	присутствует	Потеряна(ломкая) Покрылась «коркой»	-	значительная	незначитель ная	Быстро намокла и пропускает влагу
Натуральная кожа	присутствует	Потерян, Появился белый налет	присутствует	Потеряна(ломкая)	-	значительная	незначитель ная	Быстро намокла и пропускает влагу, выступили кристаллы соли.
Натуральная замша	присутствует	Потерян, Появился белый налет	присутствует	Потеряна(ломкая) Покрылась «коркой»	-	Значительная, сильно деформировалас ь	незначитель ная	Быстро намокла и пропускает влагу, выступили кристаллы соли.
Искусственная кожа (дерматин)	присутствует	присутствует	присутствует	присутствует	-	-	незначитель ная	незначительна я
Резина	присутствует	присутствует	присутствует	присутствует	_	-	-	-

Приложение 13

1. Натуральная замша

2. Натуральная кожа

Приложение 14

Wist Control of the C

Средство «TWIST», для обработки обуви

1. Необработанная обувь

Приложение 15

2. Обработанная обувь

Приложение 16

Средства, рекомендуемые для защиты обуви

Пророщенный лук

Приложение 17

Приложение 18 Раствор пескосоли

Луковица, помещенная в раствор пескосоли

Приложение 19 Через 10 дней

Приложение 20

Гвозди, помещенные в раствор пескосоли

Приложение 21

Через 7 дней

Приложение 22

Приложение 23 Мраморная и гранитная крошка для посыпки дорог

